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An Illustrated Guide to Relativity

Aimed at both physics students and non-science majors, this unique book
explains Einstein’s Special Theory of Relativity pictorially, using diagrams
rather than equations. The diagrams guide the reader, step-by-step, from the
basics of relativity to advanced topics including the addition of velocities,
Lorentz contraction, time dilation, twin paradox, Doppler shift, and Einstein’s
famous equation E = mc2. The distinctive figures throughout the book enable
the reader to visualize the theory in a way that cannot be fully conveyed
through equations alone.

The illustrative explanations in this book maintain the logic and rigor nec-
essary for physics students, yet are simple enough to be understood by non-
scientists. The book also contains entertaining problems which challenge the
reader’s understanding of the materials covered.

t a t s u t ak e u c h i is an Associate Professor in the Department of Physics
at Virginia Tech. This book grew from the “Highlights of Contemporary
Physics” course he taught for many years. Primarily aimed at non-physics
majors, it has been highly popular among physics students as well.
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Preface to English edition

This book explains Einstein’s Special Theory of Relativity (SR) using
diagrams only. Readers who are used to thinking of physics as a vast
labyrinth of equations may feel somewhat uneasy about this unconven-
tional approach and fear that it risks losing important information about
SR that can only be conveyed via equations. However, this fear is not
only unfounded but actually reversed: it is the equations that fail to
convey the essence of SR that diagrams can easily display right in front
of your eyes. After all, SR, and also the General Theory of Relativity
(GR), are about the geometry of the spacetime that we inhabit, and
what can best describe geometry if not diagrams? Equations are simply
inadequate, to wit, one diagram is worth a thousand equations.
So if you are a reader for whom equations are anathema, rest assured

that you will get much more out of this book than any physics student
will get out of a textbook full of equations. If you are a physics student,
this book will provide you with a deep enough understanding of SR that
will enable you to reproduce any equation you may need from scratch,
if such a need ever arises, and also prepare you for GR as well.
I would like to thank the readers of the Japanese [1] and Chinese

[2] editions of this book who have provided precious feedback and en-
couragement through their reviews, blogs, and email, and have given me
added confidence that the approach of this book is the right one. I would
also like to thank my students at Virginia Tech whose constant desire
to read this book in English motivated me to translate part III from
Japanese. (I wrote parts I and II in English to begin with.)
Special thanks are due to my editors at Cambridge University Press:

John Fowler for his enthusiastic support of this project, Lindsay Barnes
for her meticulous attention to detail in making sure all the text and
figures were in order, and Abigail Jones for guiding me through the
production process. It was a great joy working with them all.

January, 2010
Tatsu Takeuchi



Preface to Japanese edition

All physical theories, their mathematical expressions notwithstanding, ought
to lend themselves to so simple a description that even a child could under-
stand them.

Albert Einstein [3]

Einstein’s celebrated Theory of Relativity is one of those scientific
theories whose name is so famous that most people have heard of it,
but very few people actually know what the theory says, or even what
the theory is about. You, too, have probably heard the name, perhaps
referred to in a science fiction novel or movie, even if you do not know
much about it. And you may have received the impression that it is
a very esoteric and difficult theory that could only be understood and
appreciated by a select few.
The aim of this book is to show you that that impression is wrong. The

Theory of Relativity comes in two flavors, the Special and the General,
and if we limit our attention to the Special Theory of Relativity (SR),
which is a theory of motion, it is not a particularly difficult theory at
all and can be understood by anyone, perhaps “even a child.” By “be
understood” here, I do not mean that anyone can develop a vague idea
of what the theory is saying, but that anyone can understand it in its full
glory beginning from its basic tenets to all of its logical consequences.
And furthermore, it can be understood without using ANY equations!
In fact, one can develop a deeper understanding of the theory by avoiding
the use of equations altogether. At least, this author thinks so.
Then, why is it that I do not declare that SR is an easy theory out-

right? The reason is that SR makes some statements about the concept
of simultaneity which do not agree with our common sense based on
everyday experience, and this is where a slight difficulty lies: we must
listen to what SR is telling us with an open mind and not let our common
sense obstruct our understanding.
This book is an attempt to explain Einstein’s Special Theory of Rela-

tivity (SR) without using equations. Instead, we will use drawings called
spacetime diagrams in a way that will let you “see” the essence of the
theory. This book has three parts. Part I explains why SR was con-
structed, what it is telling us, and why SR had to be the way it is.



x Preface to Japanese edition

Part II is a collection of problems. The problems are designed so that by
thinking about them you will confront the common sense that hampers
our understanding of SR, and know where the pitfalls are that may mis-
lead us to think that there must be something wrong with SR. Part III
deals with the famous equation E = mc2. Since E = mc2 itself is an
equation, the appearance of some equations in part III could not be
avoided. However, the basic argument proceeds via diagrams and can be
followed without following the equations. The General Theory of Rela-
tivity, which is a theory of gravity, can, in principle, also be explained
using drawings only. However, since it is a somewhat complicated theory,
we will not be discussing it in this book.
Part I of this book is based on lecture notes I prepared for the course

“Highlights of Contemporary Physics” which I have taught at Virginia
Tech for many years. Part II consists of the problems I have used for
the exams in this course. I thank all the students who have taken this
course and have served as guinea pigs to see if the approach of this
book works. I would also like to thank Djordje Minic, Joy Rosenthal,
Simone Paterson, and Masako Saitō Koike for their critical reading of
this manuscript and their many helpful suggestions.
Special thanks are due to Tōru Kawahara of Iwanami Shoten for his

enthusiasm in bringing this book to publication. Without his help in dig-
itizing my hand-drawn diagrams, and translating the characters’ words
in the drawings into Japanese, this book would never have been com-
pleted.

August, 2005
Tatsu Takeuchi



PART I

Kinematics: Relativity without any equations



1

Welcome to the world of relativity

Albert Einstein’s Special Theory of Relativity, or Special Relativity for
short, came into being in 1905 in a paper with the unassuming title
of “On the electrodynamics of moving bodies.”1 As the title suggests,
Special Relativity is a theory of “moving bodies,”2 that is: motion. In
particular, it is a theory of how motion is perceived differently by differ-
ent observers. Since motion is the process in which an object’s location
in space changes with time, any theory of motion is also a theory of
space and time. Therefore, Special Relativity can be said to be a theory
of how space and time are perceived differently by different observers.
The “electrodynamics” part of the paper title refers to the fact that the
theory has something to do with light, which is an electromagnetic wave.
As we will learn in this book, the speed of light in vacuum, which we
will call c,3 plays a very special role in the theory of relativity.
Einstein (1879–1955) was not the first to construct a successful the-

ory of motion. Building upon pioneering work by Galileo Galilei (1564–
1642),4 Sir Isaac Newton (1642–1727) had constructed theories of motion
and gravity which were spelled out in his famous book Philosophiae Nat-
uralis Principia Mathematica,5 which is so famous that when people say
the Principia,6 it is understood that they are referring to Newton’s book.
First published in 1687, English translations and commentaries are still
widely available in print [5]. Newton’s theory worked perfectly well for
over 200 years (and still does today in most applications) and succeeded
in explaining the motions of objects both in Heaven (the planets, moons,
comets, etc.) and on Earth (everything you see around you). However,
toward the end of the nineteenth century, a certain mystery was discov-
ered concerning the speed of light which could not be understood within
the Galilei–Newton theory. The theory that provided a clear and illumi-
nating resolution to the mystery, and became the theory to supersede
that of Galilei–Newton, was Einstein’s Special Theory of Relativity.
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In this book, we will look at what that mystery was, why the Galilei–
Newton theory was in trouble, how Einstein solved the mystery, and
what the consequences of Einstein’s discovery were. But before we can
do that, we need to learn the basics of the study of motion.

Hi, in this book we are going to
study Albert Einstein’s
Special Theory of Relativity.

Notes
1 “Zur Elektrodynamik bewegter Körper” in the original German. The

German word “Körper” shares the same etymology as the English
“corpse.” They both come from the Latin word “corpus,” which means
“body.” For an English translation of the paper, see [4].

2 Note that the word “bodies” here does not refer to human bodies, but to
objects in general. So the expression “moving bodies” should be
interpreted simply as “moving objects.”

3 The letter c has been traditionally used as the symbol for the speed of
light in vacuum because it is the first letter in celeritas, which is the
Latin word for speed.

4 Galileo’s discoveries concerning motion are described in his book
Dialogues Concerning Two Sciences, the English translation of which can
also be found in [4].

5 In English, the title translates to Mathematical Principles of Natural
Philosophy. Both the title and content were in Latin.

6 The “c” in “Principia” is hard and should be pronounced like a “k.”
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Basics

2.1 Questions about motion

When studying the motion of an object, the most basic questions we
would like to ask are things like:

Q1: Is it moving or is it at rest (not moving)?
Q2: If it is moving, what is its direction of motion?
Q3: What is its speed in that direction?

In order to answer these questions, we need to know the object’s location
in space at each instant in time, so that we can keep track of how it is
changing as time progresses. If we find that the object’s location in
space is not changing with time, that is, if it stays at the same place,
then we can say that it is “at rest,” while otherwise we can say that it
is “moving.” If the object is “moving,” we can specify its direction of
motion by saying things like “it is moving to the left” or “it is moving
to the right,” and we can figure out its speed by determining by how
much its location in space is changing per unit time.
Once we have these basic questions under control, we can then start

to ask more advanced questions like:

Q4: Is the direction of motion changing with time?
Q5: Is the speed changing with time?
Q6: If they are changing, what is causing it?

and so on. Questions 2 and 3, and questions 4 and 5, are often combined
into the questions

Q2+Q3: If it is moving, what is its velocity?
Q4+Q5: Is the velocity changing with time?

The term velocity means something like “speed and/or direction of mo-
tion.” When we say “the velocities are the same” we mean that both
the speeds and the directions of motion are the same. When we say “the
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velocities are different” we mean that either the speeds or the directions
of motion, or both, are different.

2.2 Frames of reference

Now, what are the tools we need to actually keep track of how an ob-
ject’s location in space is changing with time? First, and foremost, we
obviously need a clock to keep track of the time. The reading of the clock
will give us a number t, which labels each instant in time. If we are using
SI units,1 t will be given in seconds. We will be using a different unit
later on.

Ok. Here’s a clock.
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Next, we need to specify the object’s location in space at each instant
in time. But the only way to do this is to specify it relative to something
else. To see this, imagine a spaceship traveling in an empty universe
which is devoid of anything else but the spaceship. I am sure you would
agree that it would be impossible to state where the spaceship is. In
fact, the concept of location itself does not make much sense in that
situation. It is only when there are stars or planets or some other object,
like another spaceship, present in the universe that we can specify the
location of the spaceship relative to the other object.
To be more specific, what we need is a reference point fixed to some

object to define our positions from. Once we have chosen such a reference
point, which we will call the origin, we can specify the location of the
object by saying, for instance, that the object is x meters to the east, y

meters to the north, and z meters up from the origin. In other words, we
can attach a set of numbers (x, y, z) as a label to each point in space. Of
course, we need a ruler to measure these distances, and we also need to
specify (or be able to specify) what we mean by east–west, north–south,
and up–down.
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Where is the spaceship?

What do you mean?
The background 
is blank!

Wait!! There’s
something else.

The spaceship is
3 meters to the right
and 2 meters above
the UFO.
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y (m)

x
(m)
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1 2

origin
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As an example, consider the motion of a car moving along a straight
horizontal road as shown in the figure. To specify the position of the car,
we can use its distance from some fixed object along the road, say a tree,
and say, for instance, that “the car is 5 meters to the right of the tree,”
or “the car is 3 meters to the left of the tree.” To simplify things, we can
assign positive numbers to the distance from the tree when the car is to
the right of the tree, and negative numbers to the distance when the car
is to the left of the tree and say “the car is at x = +5 meters” instead of
“the car is 5 meters to the right of the tree,” and “the car is at x = −3
meters” instead of “the car is 3 meters to the left of the tree.” This frees
us from the need to specify “left” or “right.” This procedure allows us
to assign a number x (in meters) to the position of the car. The tree, in
this case, is the origin.
When we have a clock to specify the time, and the origin and the

directions in which to measure the distance from the origin set up, we
say that we have a frame of reference, or simply a frame. A frame of
reference allows us to specify any point in space and time with a set of
numbers. In the frame fixed to the tree, it is the reading of the clock t

and the distance from the tree x.
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A car...

on a straight
horizontal road...

with a tree...

The tree-frame!
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Actually, even in the lone-spaceship-in-the-universe case, there is an
origin we can use to set up a frame of reference since the universe must
contain in it, in addition to the spaceship, the clock we use to specify
the time (with ourselves to read it, for that matter). It could be that the
clock is fixed to the spaceship, in which case we have a frame in which
the spaceship’s position does not change at all with time. It’s a boring
choice of frame, but a frame nevertheless.
In effect, the choice of origin is equivalent to choosing which object

we are going to consider to be at rest, that is “not moving,” in that
frame. Anything that maintains a constant distance and direction from
the origin is also at rest. In other words, the choice of origin defines
what we mean for an object to be at the same place.
Since a clock is always necessary to specify the time, the clock itself is

the logical choice for the origin in any frame. We will assume throughout
the rest of the book, without comment, and even if the clock is not drawn
explicitly in my drawings, that the clock is always fixed at the origin,
that is, the clock is always at rest in its frame. In the tree-frame we
discussed above to describe the motion of the car, the clock is assumed
to be fixed to the tree. If we fix the clock to the car instead, it will
move with the car. In that case, we will specify the location of objects
relative to the car, and we will have a different frame of reference from
the tree-frame, which we will call the car-frame.
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2.3 Relativity of motion

The choice of frame to describe the motion of any object is not unique,
and, depending on which frame you choose, the answers to the basic
questions we listed in section 2.1 would be different, namely:

Q1: Is it moving or is it at rest?
Q2+Q3: If it is moving, what is its velocity?

The answers we come up with in a particular frame will only be correct
in that frame. In other words, motion is always relative. For instance, in
the example of the car driving along a horizontal road, the car is moving
but the tree is at rest if observed in the tree-frame, but it is the other
way around if observed in the car-frame. This relativity of motion can
be traced back to the relativity of position, that is, to the fact that being
at the same place is a concept that depends on the observer.
Of course, it should not matter which frame is chosen to describe the

motion since what is actually happening to the object is independent of
who is doing the observing, or whether there is anyone there to observe
it at all.2,3 In particular, the laws of physics that govern motion must
be independent of the choice of frame.4,5

However, it can happen that the laws of physics may seem simpler in
certain frames than others. This is because the motion that is observed
in a particular frame is the motion of the object relative to the origin,
so, depending on what the origin is doing, the motion can seem more
complicated than it really is, or overly simplified.
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2.4 The Law of Inertia

If you ever take physics in school, one of the first laws you learn is
the Law of Inertia. This law was discovered by Galileo Galilei (1564–
1642) and was later incorporated into the theory of motion as one of
the guiding principles by Isaac Newton (1642–1727). It is often called
Newton’s First Law. What the law says is the following:

Law of Inertia (aka Newton’s First Law):

• If an object is at rest, it will stay at rest unless an external force acts
on it.

• If an object is moving, it will keep on moving at the same velocity
(that is, in the same direction at the same speed) unless an external
force acts on it.

It is a very simple law but it took humans thousands of years to discover
it; in particular, the second part.
The first part of the law, that objects at rest will stay at rest unless

an external force acts on it, is easy enough to see. Objects do not just
suddenly start moving on their own accord.
The second part of the law is often obscured by friction, the main

reason why it was so difficult to discover. For instance, when you are
pushing a heavy object across the floor, it stops moving the moment
you stop pushing it instead of continuing to move in the same direction.
But this is because friction (an external force) is preventing the object
from continuing. If there were no friction between the object and the
floor, the object would keep on moving just like the law says even if you
stop pushing on it. This can be demonstrated by putting the same heavy
object on a cart with well-lubricated wheels. In this case, because the
friction between the object and the floor is reduced, once you get the
object moving you will find that it is difficult to make it stop or change
its direction, confirming the second part of the Law of Inertia. (Make
sure no one is in your path before you try this.)
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Objects at rest do not start moving of their own accord.

In the presence of friction, 
objects move while being pushed...

... but stop when the force is 
removed.

In the absence of friction...

... once an object starts moving, it keeps on 
moving even after the force is removed.
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Of course, you do not have to do an experiment like this to confirm
this law. You can “feel it” yourself when you are riding a car. When the
car is accelerating rapidly you can feel your body being pushed into your
seat. This is because your body is resisting the change in its speed. When
the car brakes suddenly you can feel your body being thrown forward.
This is because your body tries to keep on moving at the same speed
as before even though the car under you has slowed down. (And that’s
why you need to wear a seat belt if you don’t want to smash through
the windshield.) When the car curves to the left (right), you feel your
body being pushed toward the right (left). This is because your body is
resisting the change in its direction of motion.
Basically, what the Law of Inertia is saying is that objects resist any

change to their velocities. If left alone, an object will continue to move
at constant velocity, or, in other words, at a constant speed in the same
direction along a straight line. (Being at rest is a special case of this in
which the velocity is zero.) This property of objects is called inertia.
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Your body resists the change in direction.

Your body resists the change in speed.
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2.5 Inertial and non-inertial frames

Now, the problem with the Law of Inertia is that it is not correct in all
frames. (They probably don’t tell you this in school.) For instance, when
you are riding your car and using the car-frame to observe the motion
of your body, your body will be jerked around when the car accelerates
or decelerates or makes a turn even though no forces are acting on your
body. Clearly, the Law of Inertia does not hold in the car-frame because
the frame itself is changing its speed and/or direction of motion.
The Law of Inertia only holds when the motion is observed from special

frames called inertial frames. If you can find one frame in which the Law
of Inertia holds, then any frame which is moving at constant velocity
relative to the first is also an inertial frame. This is because if an object
is moving at a constant velocity relative to the first frame, then it will
be doing so relative to the second frame as well. Therefore, there are an
infinite number of inertial frames.
In the example shown in the drawing on the opposite page, the ball

is sitting at rest (relative to the train) on the floor of a train which is
moving at constant velocity relative to the tree. If the contact between
the ball and the train floor is frictionless, the ball receives no net external
force. (Gravity is cancelled by the normal force from the floor.) Observed
from the tree-frame, it will continue to move at the same velocity as the
train. Observed from the train-frame, it will continue to stay at rest. So
the Law of Inertia holds in both the tree- and train-frames. They are
both inertial frames.



2.5 Inertial and non-inertial frames 19

No net force was applied to
the ball and it continued to
move at constant velocity.
I’m in an inertial frame.

No net force was applied to the 
ball and it continued to stay at  
rest. I’m in an inertial frame.
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Frames in which the Law of Inertia does not hold are called non-
inertial frames. They are the ones that are changing speed or changing
direction relative to the inertial frames. In the example shown in the
drawing on the opposite page, the ball is again sitting on the frictionless
floor of the train. But this time, the velocity of the train relative to
the tree-frame is not constant; it starts to speed up toward the right in
between the second and third drawings from the top. As a result, the
ball accelerates to the left in the train-frame even though no net external
force is acting on it. This shows that the train-frame is a non-inertial
frame.
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No net force was applied to the
ball but it changed its velocity.
I’m in a non-inertial frame.

It’s moving faster!

The ball has started to
move though no net
force was applied to it!
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If the train is slowing down, on the other hand, as shown here, the
ball accelerates to the right even though no net external force is acting
on it. Again, the train-frame is a non-inertial frame.
Similarly, the car-frame is an inertial frame as long as the car continues

to travel with constant velocity, that is, in a straight line with constant
speed, relative to an inertial frame. It will become a non-inertial frame if
the car is changing its speed or direction of motion. In an inertial frame,
if nothing is happening to the motion of an object it will be observed
as nothing happening, but from non-inertial frames it may be observed
as something happening because something is actually happening to the
frame itself.
The space shuttle in orbit is also in a non-inertial frame. It is in

constant free fall towards the Earth.6 As a result, objects inside the
space shuttle look like they are just floating in mid-air. In this non-
inertial frame, something is happening to the motion of the objects (they
are falling toward the Earth) but it is not observed as such because that
same something is happening to the frame also.
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The ball has started to
move though no net
force was applied to it!

It’s moving faster!

No net force was applied to the
ball but it changed its velocity.
I’m in a non-inertial frame.
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The frame fixed to the Earth is actually a non-inertial frame because
of its daily rotation around its axis, and also its annual rotation around
the Sun. As a result of the Earth’s rotation, objects on its surface would
be flung off were it not for the Earth’s gravity holding them down. In
fact, this “flinging off” effect is largest near the equator, where the radius
of rotation is largest, and can be observed as an apparent reduction in
the Earth’s gravitational pull compared to that at the poles, though the
effect is very small. (About 0.3%.)7 This is why we know for certain
that it is the Earth that is rotating around its axis and not the Heavens
rotating around Polaris.8 The Earth’s annual rotation around the Sun
leads to a difference in the apparent gravitational pull of the Earth
between aphelion and perihelion, but this effect is much much smaller.
(About 0.006%.)
However, for the purposes of this book, the Earth-frame is, to a very

good approximation, an inertial frame. That is how we discovered the
Law of Inertia in the first place by doing experiments on the surface of
the Earth, and also why people before Copernicus (1473–1543) thought
that the Earth did not move. So we will continue to pretend that the
Earth-frame is an inertial frame since it is much easier to talk about
trees and cars than about spaceships and stars (at least to me).
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2.6 What’s so “special” about Special Relativity?

Though it is possible to write the laws of physics so that they are valid
in a general frame of reference, including both inertial and non-inertial
frames, they end up being fairly complicated.
In the case of Newton’s theory of motion, its usual formulation you

learn in school is only valid in the special inertial frames. To make them
work in a general frame, the theory has to be augmented by inertial
forces. For instance, in the frame fixed to the space shuttle in orbit,
nothing inside the shuttle is falling toward the Earth even though gravity
is acting on them. To explain this, you have to introduce a fake force
called the centrifugal force, which doesn’t really exist, to cancel the
gravitational force.
Now, as we will see, the Galilei–Newton theory of motion breaks down

when the speeds of objects approach the speed of light c. And Einstein’s
Special Theory of Relativity tells us how it has to be modified in the
special inertial frames. That is why it is called the “special” theory.
Generalizing the theory to general frames of reference took Einstein 10
years longer; his General Theory of Relativity was not completed until
1915.9 As you can imagine, General Relativity is a fairly complicated
theory so we are not going to discuss it further in this book.
In the following, we will limit our attention to motion as observed

from inertial frames. So when we simply say “frame” from now on, we
will mean an inertial frame.
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Notes
1 The system of units that was developed in France after the French

Revolution. It is used all over the world except in the USA. The acronym
“SI” stands for Systeme International d’Unites = International System of
Units (in French, the adjective comes after the noun). It was originally
based on the size of the Earth and the mass density of water, and is a
very democratic and universal choice of standards compared to yards,
feet, and inches, which were based on the sizes of human body parts.

2 If you are a Zen Buddhist or a Quantum Mechanic, you may disagree. I
am stating Einstein’s point of view here.

3 In Einstein, words: “Physics is an attempt conceptually to grasp reality
as something that is considered to be independent of its being observed.
In this sense one speaks of physical reality.” See [3], page 240.

4 In Judeo-Christian-Islamic terms, what God/Allah does in Her/His
wisdom is independent of how we Humans choose to view it in our
ignorance.

5 If the laws of physics that govern motion are independent of the choice of
frame, then it should be possible to express them in a frame-independent
way. Of course, you need a frame to describe motion in the first place so
this does not mean that you want a theory which does not make any
reference to your frame choice. Rather, you want to express your laws in
such a way that they are correct in any frame, that is, in a general frame
of reference. This idea is called the principle of general relativity, or the
principle of general coordinate invariance, and was the guiding principle
behind Einstein’s theories. Einstein’s General Theory of Relativity is
precisely a theory that satisfies this requirement. But it is a very difficult
theory (mathematically) and beyond the scope of this book. The Special
Theory of Relativity is less ambitious in that it restricts its attention to
inertial frames of reference.

6 The space shuttle in orbit is actually falling towards the Earth. As it falls
vertically toward the Earth, it travels at a great speed horizontally as
well, and as a result it “falls over the edge” of the Earth, so to speak.
Because the Earth is round, it keeps on falling along the curvature of the
Earth and ends up never hitting the ground.

7 This reduction in apparent gravitational pull may be small, but large
enough to save fuel and increase payload when launching rockets into
orbit. That is why the space shuttle is launched from Florida and not
from Maine, since Florida is closer to the equator.

8 This can also be demonstrated using the Foucault pendulum.
9 The first paper on General Relativity appeared in 1916, in the journal
Annalen der Physik, volume 49 [4]. Even though General Relativity is a
theory of motion, it is also a theory of gravity. Hints that the theories of
motion and gravity had to be unified existed as far back as the discovery
by Galileo that objects fell at the same rate independently of their
masses when released in gravity [4]. Newton incorporated this into his
theories by assuming that the inertial and gravitational masses were the
same [5]. General Relativity provides a geometrical explanation why they
are the same by associating gravity with the structure of spacetime itself.
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3

Galilean relativity

3.1 Basic questions

Let us recall the basic questions we asked about the motion of an object
in section 2.1, namely:

Q1: Is it moving or is it at rest?
Q2+Q3: If it is moving, what is its velocity?

As we have seen, in order to answer these questions we must first choose
a frame, and the answers depended on our frame choice.
Let us actually try this out. Consider the car moving along a straight

horizontal road as shown in the figure. In the tree-frame, at every instant
in time the clock fixed to the tree (though it’s not drawn on the tree,
assume that it is) will give some reading t (in seconds) and at the same
instant the car will be somewhere along the road at some position x (in
meters). The figure shows the sequence of this position from time t = 0
seconds to t = 4 seconds in 1-second intervals. As you can see, we can
tell from the figure that:

A1: the position of the car is changing with time so it is obviously
moving, and

A2+A3: the position of the car is changing at a rate of +1 meters every
second so its velocity is +1 meters per second. (The plus sign
indicates that the motion is toward the right, so this number
tells us not only the speed of the car but also its direction of
motion.)

The figure also shows a ball which is also moving horizontally, and we
can see that the ball is moving at a velocity of +0.5 meters per second.
Of course, the tree is at rest in this frame, so we can assign it a velocity
of 0 meters per second.
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What will the exact same motion look like if observed from the car-
frame?1 In the car-frame, time is specified by the reading of a clock fixed
to the car. Let’s call this reading t′ (in seconds) to distinguish it from
the reading of the clock fixed to the tree t. To keep things simple, we
will assume that the car-clock is synchronized with the tree-clock so that
their readings, t′ and t, agree at all times.2 The location of an object in
space in the car-frame is specified by its distance from the car, which we
will call x′ (in meters) to distinguish it from the location of an object in
the tree-frame x which was the distance from the tree.
Then, at each instant labeled by t′ in the car-frame, the relative loca-

tions of the objects will be the same as that observed in the tree-frame
at t = t′. At t′ = 1 second, for instance, the relative locations of the tree,
car, and ball are the same as those in the tree-frame at t = 1 second,
which was shown in the second from top figure on the previous page.
The only difference is that we must now use the distance from the car to
specify the location of objects. So the tree, which is at x = 0 meters in
the tree-frame, is at x′ = −1 meter in the car-frame. The car, which is
at x = +1 meter in the tree-frame, is at x′ = 0 meters in the car-frame.
And the ball, which is at x = +3 meters in the tree-frame, is at x′ = +2
meters in the car-frame. This is depicted in the second from top figure
on the opposite page.
We can figure out the locations of the objects for all other times in a

similar manner, and we will obtain the sequence of figures shown here.
The clock is actually fixed to the car though it is drawn on the margin.
This sequence describes the motions of the tree, the car, and the ball in
the car-frame. If we follow how the location of the tree is changing with
time, we can see that, after each second, the tree moves to the left by
one meter. So the velocity of the tree is −1 meters per second, where
the minus sign indicates that the motion is toward the left. Similarly,
the ball is moving at a velocity of −0.5 meters per second. The car is at
rest so its velocity is 0 meters per second.
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So the answers to the basic questions in the two frames can be tabu-
lated as follows:

object velocity in tree-frame (m/s) velocity in car-frame (m/s)

tree 0 (at rest) −1
car +1 0 (at rest)
ball +0.5 −0.5

Now a natural question to ask is: how are these different observations
from different frames related? They are both observations of the exact
same objective and physical reality so they cannot be independent of
each other. Each observation must contain the exact same information
about the reality being observed, since it should not matter which frame
you use, which means that the observation in one frame must be trans-
latable into another. What is the rule of translation?

3.2 Spacetime diagrams

Now before we try to answer this question, I would like to introduce a
compact way of describing the observed motion of objects, since keeping
track of the locations of the objects pictorially, as I have done, is rather
bulky. I have indicated the positions of the objects at only five instances,
but that already takes up an entire page. If we wanted to study the
motion of objects in more detail at smaller chronological increments,
things would quickly get out of hand.
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Imagine that we have a movie of the tree, car, and ball taken in the
tree-frame. Each frame3 of the movie captures the positions of the three
objects at a particular instant in time as observed in that frame of ref-
erence. Assume that the chronological separation of neighboring frames
is constant. Cut these frames apart and stack them up in chronologi-
cal order as shown in the figure so that the tree in each frame overlaps
with the tree in the next. If you look at this stack from above, the line
connecting the images of the tree in each frame will be a vertical line
as shown in gray. The line connecting the images of the car is shown in
pink, and the line connecting the images of the ball is shown in crimson.
The graph you obtain in this fashion, with the horizontal axis corre-

sponding to space and the vertial axis corresponding to time, is called
a spacetime diagram. It is a compact and visual way of describing the
motion of objects.
The motion of each object is described by a line on the spacetime

diagram. If the object is moving at constant velocity, this line will be
straight as in the case of the tree, the car, and the ball shown here. These
lines on the spacetime diagram are called worldlines.4 The spacetime
diagram represents the world in which the motion takes place, and the
worldlines represent the motions of objects in that world.
The position of any object at any given time can be read off of the

spacetime diagram by looking at how the object’s worldline is positioned
against the square grid in the background. The square grid is composed
of vertical lines parallel to the time-axis which connect the points that
are at the same place in the tree-frame, and horizontal lines parallel to
the space-axis which connect the points that are at the same time. If you
want to know the position of the ball, for instance, at some particular
time, say at t = 3 seconds, all you need to do is slice the diagram with a
horizontal line going through the t = 3 seconds point on the time-axis,
and look at where it crosses the worldline of the ball. This happens at
point A on the diagram. Following the vertical line that goes through A
down to the space-axis, we find that A is at x = 4 meters, which tells
us that the ball was at x = 4 meters at t = 3 seconds.
As I mentioned above, an object moving at a constant velocity is

represented by a straight worldline on the spacetime diagram. How steep
this worldline is tells us how fast the object is moving. The closer the
worldline is to the horizontal the faster the object is, and the closer the
worldline is to the vertical the slower the object is. If the worldline is
completely vertical, the object is at rest.
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The spacetime diagram for the same motion observed from the car-
frame is shown here. To obtain it, we need a movie taken in the car-frame,
but actually we can use the movie taken in the tree-frame as it stands.5

All we need to do is to stack the frames of the movie so that the images
of the car overlap giving a vertical line on the spacetime diagram.
Again, we can read off where any object is at any given time by looking

at how the object’s worldline is positioned against the square grid in
the background. This time, the square grid is composed of vertical lines
parallel to the time-axis, labeled t′ to distinguish it from the t-axis in the
tree-frame, which connect the points that are at the same place in the
car-frame, and horizontal lines parallel to the space-axis which connect
the points that are at the same time.
If we want to figure out where the ball is at t′ = 3 seconds in this

frame, we slice the diagram with a horizontal line which goes through
the t′ = 3 seconds point on the t′-axis, and look at where it crosses the
worldline of the ball. This is at point A on the diagram. Following the
vertical line that goes through A down to the x′-axis, we find that A
is at x′ = 1 meter, which tells us that the ball was at x′ = 1 meter at
t′ = 3 seconds.

If we want to figure out where the tree is at t′ = 2 seconds, we slice the
diagram with a horizontal line which goes through the t′ = 2 seconds
point on the t′-axis, and look at where it crosses the worldline of the
tree. This is at point B on the diagram. Following the vertical line that
goes through B down to the x′-axis, we find that B is at x′ = −2 meters,
which tells us that the tree was at x′ = −2 meters at t′ = 2 seconds.
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3.3 The Galilei transformation

Once we have the two spacetime diagrams representing the observations
from the tree-frame and the car-frame, we can ask: how are the two
diagrams related? How can we obtain one spacetime diagram from the
other?
Let’s start from the car-frame diagram shown on the upper-half of

the opposite page. Since the diagram was obtained by stacking up many
movie frames so that the car stays in the same place, to obtain the
diagram in the tree-frame all we have to do is shift each movie frame
to the right until the image of the tree overlaps with that in the frame
immediately below it. This procedure will result in a diagram like the
one shown on the lower-half of the opposite page, which is precisely the
spacetime diagram in the tree-frame except for the skewed grid inherited
from the car-frame diagram.
Note that the shaded square in the top figure is mapped onto the

shaded parallelogram in the bottom figure, and that the area of the
shaded regions are the same. This is because the amount of “film” con-
tained in the unit square, or the “number of events” in it, so to speak,
is conserved in the procedure.
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We can similarly start from the tree-frame diagram, shown on the
upper-half of the opposite page, and obtain the car-frame diagram by
following the reverse procedure. We shift each frame of the movie to the
left until the image of the car overlaps with that in the frame immediately
below it. This will give us the diagram shown on the lower-half of the
opposite page, which is the spacetime diagram in the car-frame except
for the skewed grid inherited from the tree-frame diagram.
Again, I have shaded a unit square on the tree-frame grid, and the

corresponding parallelogram on the car-frame diagram. The area of the
shaded region is conserved.
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The intermediate steps of both procedures are shown here. To trans-
form the car-frame diagram into the tree-frame diagram, we start from
the car-frame diagram, shown top-right in the figure, and skew its square
grid to the right until the worldline of the tree becomes vertical. The
worldlines then match those in the tree-frame diagram, shown bottom-
left.
Similarly, to transform the tree-frame diagram into the car-frame di-

agram, start from the tree-frame diagram, shown bottom-left, and skew
its square grid to the left until the worldline of the car becomes vertical
(start from the bottom-left figure and proceed upwards). The worldlines
then match those in the car-frame diagram, shown top-right.
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This skewing of the grid which takes you from one frame to another is
called the Galilei Transformation. It lets you figure out what the motions
will look like in a different frame when given the spacetime diagram in
one frame.
Now if you look at the tree-frame diagram that we obtained by skewing

the car-frame diagram (bottom figure), we can still read off the informa-
tion about the car-frame if we keep the skewed grid in place and don’t
replace it with the square grid of the tree-frame. In fact, even though
the worldlines of the tree, the car, and the ball overlap with those in
the tree-frame diagram (top figure), we can still consider this to be a
car-frame diagram as long as the car-frame grid is still there.
For instance, at t′ = 3 seconds, the ball is at point A. If we follow

the line parallel to the car-worldline which goes through A down to the
space-axis, we can tell that its position in the car-frame is x′ = 1 meter.
At t′ = 2 seconds, the tree is at point B. If we follow the line parallel to
the car-worldline which goes through B down to the space-axis, we can
tell that its position in the car-frame is x′ = −2 meters.

This suggests an alternative way of looking at the Galilei Transfor-
mation. Instead of skewing the entire diagram to go from one frame
to another, we can simply superimpose onto a single diagram different
grids, each representing the observation from a particular frame.
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So how can we figure out the grid that we are supposed to use? Recall
that the “position” of an object in each frame is the distance of the
object from the origin. So the lines that connect the points that are at
the same place in each frame must be parallel to the worldline of the
origin (see figure below).
In the tree-frame, the tree is the origin so the lines that connect points
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that are at the same place must be parallel to the tree-worldline. In the
car-frame, the car is the origin so the lines that connect points that are
at the same place must be parallel to the car-worldline.
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same time are horizontal in any frame (see figure below).6
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So finding the skewed grid which represents the observation from any
frame on any spacetime diagram is easy. The horizontal lines that con-
nect the points that are at the same time remain the same in all frames.
The lines that connect the points that are at the same place are drawn
parallel to the worldline of the object to which the origin is fixed.
For instance, if, in addition to the tree- and car-frames, we wanted

to figure out the grid that describes the observation from a frame of
reference fixed to the ball, we would keep the horizontal lines from the
tree- and car-frames as they are, and add lines parallel to the ball-
worldline which connect the points that are at the same place in the
ball-frame. (Try this yourself.)
From this point of view, a spacetime diagram without any grid on it

can be considered a representation of the objective and physical reality,
and superimposing a grid on it corresponds to choosing the frame from
which to make the observation.
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Once we get used to this idea, we can save ourselves the trouble of
drawing grids on the spacetime diagram since we will be able to “see”
them without actually drawing them. All you need are the space- and
time-axes.
To find out where a point on the spacetime diagram is in a particular

frame, draw a line through the spacetime point which is parallel to the
time-axis of that frame (which is the worldline of the origin of that frame)
and read off its position from where the line intersects the space-axis.
To find when the spacetime point is in that frame, draw a line parallel
to the space-axis, which is a horizontal line in all frames, and read off
the time from where the line intersects the frame’s time-axis. That’s all
there is to it.
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3.4 Addition of velocities

The Galilei transformation tells us how observations in one inertial frame
are related to observations in another. Let us now ask the following
question:

• Assume that the car is moving at a constant velocity of u meters per
second when observed from the tree-frame. The velocity of an object,
say a ball, is v meters per second when observed from the car-frame.
What is the ball’s velocity when observed from the tree-frame?

To simplify things, let’s assume that the tree, the car, and the ball are
all at the same place at time t = t′ = 0. Then, at a later time, the
distance from the origin of each object will be proportional to its speed
in either frame. The spacetime diagram which describes the motion of
the ball and the tree in the car-frame is shown here. The car is at rest at
the origin, the tree is moving with speed u meters per second to the left
(velocity −u), and the ball is moving with speed v meters per second to
the right (velocity +v).
If we take a time-slice of the spacetime diagram at t = t′ = 1 second,

then the relative positions of the tree, the car, and the ball will be as
shown: the distance between the tree and the car will be u meters, the
distance between the car and the ball will be v meters, and the distance
between the tree and the ball will be u + v meters. Since the distance
between the tree and the ball has increased from zero to u + v meters
toward the right in one second, the velocity of the ball in the tree-frame
is u + v meters per second.

So according to the Galilei theory, to translate the velocity of an object
observed in frame 1 (the velocity of the ball in the car-frame) to that
observed in frame 2 (the velocity of the ball in the tree-frame), all you
need to do is add the velocity of the origin of frame 1 relative to frame
2 (the velocity of the car in the tree-frame).
This rule can easily be checked by looking at the table on page 34

which gave the velocities of the tree, the car, and the ball in the tree-
and car-frames. The velocity of the ball in the car-frame was −0.5 meters
per second. The velocity of the car in the tree-frame was +1 meters per
second. Adding these together, we obtain +0.5 meters per second, which
was the velocity of the ball in the tree-frame.
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Now I’m sure this is all very easy for you, and you are probably won-
dering by now why I am spending so much time on such trivialities.
But bear with me. Thinking about things that are trivial to you using
spacetime diagrams will help us in understanding what is to come.

3.5 Acceleration and Newton’s Second Law

As we have seen, the velocity of an object depends on the frame from
which the observation is made. However, according to the Galilei trans-
formation, the velocities observed from different frames only differ by the
relative velocity of the two frames. This implies that if the velocity of
the object changes, both frames will agree by how much it has changed.
To see this, consider a ball traveling at velocity v meters per second

when observed from the car-frame. The car, on the other hand, is trav-
eling at velocity u meters per second relative to the tree-frame. The
velocity of the ball in the tree-frame is u + v meters per second, as we
just discussed in the previous section. Now, let’s say that the velocity
of the ball increased from v meters per second to v + ∆v meters per
second in the car-frame. The corresponding velocity in the tree-frame is
u + v +∆v. So in both frames the velocity has increased by ∆v.

This fact is important for Newton’s Second Law, which provides a
prediction for the change in velocity when an external force acts on an
object. Since the change in velocity is independent of the inertial frame
(according to the Galilei transformation), Newton’s Second Law applies
equally to all inertial frames.7
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The velocity of
the ball is 50 m/s.

The velocity of
the ball is 20 m/s.

A force is acting 
on the ball.
It’s accelerating!

A force is acting 
on the ball.
It’s accelerating!Force

The velocity of the ball
is now 70 m/s. It has
accelerated by 20 m/s.

The velocity of the ball is now 40 m/s.
It has accelerated by 20 m/s.

30 m/s

30 m/s

30 m/s

 

70 m/s

Both observers agree that the ball has accelerated by 20 m/s.

50 m/s
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Notes
1 Since the car-frame is moving at a constant velocity relative to the

tree-frame, it is also an inertial frame.
2 We will learn later that, surprisingly, clocks in different frames cannot be

synchronized. But we will assume that they can be for the moment.
3 Here, the word “frame” is used in a different sense from “frame of

reference.”
4 Weird term. Must be a direct translation from German.
5 Or at least, we think we can.
6 At least, that is what we think.
7 Newton’s Second Law expressed in an equation is

F = ma

where F is the external force, m is the mass of the object, and a is the
acceleration = rate of change of the velocity. When the external force is
zero, that is F = 0, then this equation tells us that a = 0, which means
that the velocity of the object does not change (this is Newton’s First
Law). When the external force is non-zero, then the acceleration is
proportional to F but inversely proportional to m. This means that the
larger (smaller) the mass is, the smaller (larger) the acceleration. So the
mass m is a measure of the object’s inertia, that is, its ability to resist
change in its velocity. In this sense, the mass m is sometimes called the
inertial mass to distinguish it from the gravitational mass, which is a
measure of how strongly the object feels the effect of a gravitational field.
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Einsteinian relativity

4.1 The mystery of the speed of light

Now the surprising thing about the Galilei–Newton theory that we have
been discussing so far is that it is wrong. It is not wrong in the sense
that it is completely wrong, but wrong in the sense that there is a limit
to its applicability and in certain cases it does not work.1 And that case
involves the speed of light.
The speed of light in a vacuum is very very fast.2 It is 299 792 458

meters per second,3 or roughly 3 × 108 meters per second. Since we do
not want to end up writing this big number repeatedly, we will just
represent it with the letter c. To give you an idea just how fast this is,
it is fast enough to circumnavigate the Earth seven and a half times per
second. The time it takes for light to travel 30 centimeters (about a foot)
is only 1 nano-second, which is 0.000 000 001 seconds.
Because c is so large, it was very difficult to measure what it was for

a long time. Galileo himself tried it but did not succeed.4 But by the
end of the nineteenth century, the technology had advanced to the point
that very accurate measurements of c were possible.
What the physicists at the time were trying to figure out was how the

speed of light depended on the motion of the observer, and also on the
motion of its source. Now, I am not going to explain why the physicists
wanted to know this or how the measurement was actually done since
we are not interested in history at the moment. All you need to know is
the surprising result:

• The speed of light in a vacuum is always equal to c regardless of the
motion of the observer or the motion of the source. It is c in all inertial
frames.
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What this statement is saying is this: You could chase after a beam
of light as fast as possible, or run away from a beam of light as fast as
possible, . . .
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What you expect:
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1 m/s
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100 m/s
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The speed of light is c.

The speed of light is c.
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. . . but the speed of light will always be c.
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Or the source of the light could be moving away from you at a very
fast speed, or moving towards you at a very fast speed, . . .

The speed of light is c

What you expect:

It’s c – 100 m/s

It’s c

It’s c – 1000 m/s

It’s c – 10000 m/s

It’s c + 100 m/s

It’s c + 1000 m/s

It’s c + 10000 m/s

10000 m/s

1000 m/s

100 m/s
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. . . but the speed of light will always be c.
Clearly the addition-of-velocities rule we derived from the Galilei trans-

formation does not work here!

The speed of light is c

What really happens:

It’s c ! It’s c !

It’s c !

It’s c !

It’s c

100 m/s

1000 m/s

10000 m/s

It’s c !

It’s c !



64 Einsteinian relativity

4.2 Modification to the spacetime diagram

Now we are going to analyze this problem using spacetime diagrams,
but we need to make a slight modification since the speed of light is so
fast. If we keep on using meters to label the space-axis and seconds to
label the time-axis, the worldline of a beam of light would look virtually
horizontal because of its great speed.
So what can we do? We could stretch the diagram in the vertical

direction until the worldline of a beam of light is not so close to the
horizontal, but then the units of time that label the time-axis will be so
short, as shown in the second graph, that we have no sense of what kind
of time intervals are involved in the problem.
A similar problem exists in astronomy, where saying things like “the

distance between the Earth and the Sun is about 1.5 × 1011 meters,”
or “the nearest star system is Alpha Centauri which is about 4.1× 1016

meters away,” doesn’t tell us much because the numbers involved are so
huge that we have no sense of how large these distances really are. What
astronomers do to solve this problem is to convert spatial distances into
time using the speed of light c. Instead of giving the distance in meters,
they use the amount of time it takes for light to cover that distance to
describe how far things are. A light-minute is the distance light travels
in a minute (about 1.8 × 1010 meters), a light-day is the distance light
travels in a day (about 2.6×1013 meters), and a light-year is the distance
light travels in a year (about 9.5 × 1015 meters). The distance between
the Earth and the Sun is about 8 light-minutes, and the distance to
Alpha Centauri is about 4 light-years. Since we have a good sense of
how long a minute or a year is, and given the extreme speed of light,
this gives us a feel for just how far away these objects really are.
We are going to use a similar trick here and use c to convert very

short time intervals into manageable lengths. If we multiply c with t,
the product ct gives the distance light travels in the time interval t.
For instance, light travels 0.3 meters in 1 × 10−9 seconds, 0.6 meters in
2×10−9 seconds, 0.9 meters in 3×10−9 seconds, and so on and so forth.
The idea is to use this distance travelled by light as the measure of time.
So instead of saying 1 × 10−9 seconds of time, we can say 0.3 meters of
time, and we definitely have a good idea of how long 0.3 meters is (about
a foot) which gives us an idea of how short 1 × 10−9 seconds is, given
the extreme speed of light. Furthermore, using ct instead of t to measure
time is also convenient since the speed of light will be exactly 1: it takes
1 meter of time for light to travel a distance of 1 meter. The worldline
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of a beam of light will be at a 45 degree angle from the horizontal on
the spacetime diagram, as shown in the final graph below.
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4.3 The problem

Let us now consider the following situation, which exemplifies the prob-
lem we are facing.
A tree is at rest on the ground, and a car is moving toward the right

at half the speed of light. (It is a very fast car.) Both the tree and the
car have clocks on them which are set to agree at time t = t′ = 0 when
they are both at the same place as a light bulb which is switched on
at that instant. Two photons, that is, particles of light, will be emitted
from the light bulb at the speed of light c, one toward the right, and
another toward the left. How are the motions of the tree, car, and the
photons observed in the tree- and car-frames?
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The observation in the tree-frame is given by the spacetime diagram
shown in the top figure opposite. The tree is at rest at the origin, the
car is moving toward the right at speed 1

2c, and the two photons are
moving at speed c to the right and to the left. At any instant in this
frame, the two photons are equidistant from the tree, while the car is
midway between the tree and the photon on the right.
The exact same motion observed in the car-frame is given by the

spacetime diagram shown in the bottom figure. The car is at rest at the
origin, and the tree is moving toward the left at speed 1

2c, and the two
photons are again moving at speed c to the right and to the left. At
any instant in this frame, the two photons are equidistant from the car,
while the tree is midway between the car and the photon on the left.
Now, I am not making this up. The speeds of the photons are exactly

the same in both frames. And this is regardless of what the motion of
the light bulb was when it was turned on. The light bulb could have
been at rest in the tree-frame, or it could have been fixed to the car, or
it could have been moving at a totally different velocity all together, but
the speeds of the two photons are c in both the tree-frame and the car-
frame, and also in any other frame. This is an experimentally established
fact and we cannot argue with it even if we don’t like it.
But how can this be?
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Now, I’m sure you agree that this is not what we expect at all. We
expect that if the photon is traveling at speed c toward the right in the
tree-frame, it will be observed as traveling at half of c toward the right
in the car-frame. If the photon is traveling at speed c toward the left
in the tree-frame, we expect it to be observed as traveling at 1.5 times
c toward the left in the car-frame. This expectation is shown below in
the spacetime diagram on the top-right, which is obtained by a Galilei
transformation from the spacetime diagram in the tree-frame (shown
top-left).
Similarly, if the photon is traveling at speed c toward the right in the

car-frame, we expect it to be observed as traveling at 1.5 times c toward
the right in the tree-frame. And if the photon is traveling at speed c

toward the left in the car-frame, we expect it to be observed as traveling
toward the left at half of c in the tree-frame. This expectation is shown
in the spacetime diagram on the bottom-right, which is obtained by
a Galilei transformation from the spacetime diagram in the car-frame
(shown bottom-left).

ct ct

ct� ct�

x� x�

xx

Galilei
Transformation

Galilei
Transformation

Not the same!!
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What this is telling us is that our expectation, and therefore the Galilei
transformation, is wrong since it does not agree with observation.
So what is going on? We have two observers observing the exact same

physical reality from two different frames so their observations cannot
be independent. The observation in one frame must contain the exact
same information as the observation in the other frame, since the choice
of frame should not matter, so there must exist a translation which tells
us how the observations from different frames are related. What is that
translation?

Same physical reality

Must be translatable

1
2

–1
0

The tree is not moving.
The car is moving to the right
with speed    c.
The photons are propagating
in both directions with speed c.

The car is not moving.
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The photons are propagating
in both directions with speed c.
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4.4 The solution

How can the observations from the tree- and car-frames be the observa-
tion of the exact same physical reality?
At any instant in the tree-frame, the car is midway between the tree

and the photon on the right. But at any instant in the car-frame, the
car is only one-third of the way between the tree and the photon on the
right. How can the car be at two different places at the same time?

Or take the photon traveling toward the left. In the tree-frame, at any
instant it is at the same distance from the tree as the photon traveling
toward the right. But in the car-frame, at any instant it is only one-third
of the distance from the tree as the photon traveling toward the right.
How can the photon be at two different places at the same time?

I am sure you would agree that nothing can be at two different places
at the same time, whether it be a car or a photon. That is just common
sense. Then how are we to interpret our current problem? Now, some
people may argue that this shows that reality itself will depend on the
observer, and that there is no such thing as an objective reality. But
Einstein disagrees. He points out that while nothing can be at two dif-
ferent places the same time, they can be at two different places at two
different times.
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Consider the spacetime diagram in the tree-frame shown here. Slicing
the diagram along a horizontal line tells us where the objects are at
that particular instant in the tree-frame. Such a slice is shown on the
spacetime diagram. We can see that the car at B is midway between
the tree at C and the photon on the right at A. In the car-frame, the
car is supposed to be only one-third of the way between the tree and
the photon on the right at any instant, which is clearly not the case
here. Now trace the worldline of the car backwards from B toward the
origin until you reach point E. This point is at an earlier time (in the
tree-frame) than A, but at this point the car is precisely one-third as far
from the tree as the photon on the right is at A.
Similarly, the photon on the left at D is at the same distance from

the tree as the photon on the right at A. In the car-frame, the photon
on the left is supposed to be only one-third as far away from the tree as
the photon on the right at any instant. Now, trace the worldline of the
photon on the left backwards from D to the origin until you reach point
G. This point is at an earlier time (in the tree-frame) than either A or
E, but at this point the photon on the left is precisely one-third as far
from the tree as the photon on the right is at A.
Notice that the points A, E, and G all fall on a straight line. There

seems to be a definite pattern here. Could it be that though the points
A, B, C, and D are at the same time in the tree-frame, they are not at
the same time in the car-frame, and the points that are at the same time
as A in the car-frame are actually points E, F, and G?
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It is easy to see that if you slice the tree-frame diagram with any tilted
line parallel to the line AEFG, then the relative positions of the tree,
the car, and the two photons turn out to be precisely what would be
expected in the car-frame.
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So could it be that though the points A, E, F, and G are not at the
same time in the tree-frame, they are at the same time in the car-frame?
Do they correspond to points that fall on a horizontal line on the car-
frame diagram?
This is a revolutionary idea indeed, since Einstein is saying that the

concept of events happening at the same time depends on the frame,
just like the concept of at the same place depends on the frame. Two
events that happen at the same time for one observer do not happen at
the same time for another observer, and vice versa.
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4.5 Einstein’s argument

Let’s take a look at the argument of Einstein himself presented in his
book Relativity: The Special and the General Theory [6], which was writ-
ten for the layman.
Einstein says: If two photons both travel at the same speed c, then the

time it takes for them to cover the same distance must be the same. I am
sure you all agree with this statement. After all, this is what you mean
when you say that two objects are traveling at the same speed.5

Now notice that on the spacetime diagram on page 75, the points
A and G are the same distance away from the car. (The diagram is
reproduced below so that you can see this more clearly.) In the car-frame,

car

A

In the car-frame A and G are at the exact same distance
from the car. Therefore, in the car-frame the photons
travel the exact same distance to reach A and G. Since 
the speed of light in both directions is c in the car-frame, 
it takes the exact same amount of time for the photons to
reach A and G. Therefore, A and G must be at the same
time in the car-frame.

G

ct

x

Einstein’s argument:
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the two photons have traveled the exact same distance to reach points
A and G, so they must have taken the exact same amount of time to do
so since the speed of light is always c in any frame. And since the two
photons started out from the origin at the same time, points A and G
must also be at the same time in the car-frame, even though they are
not at the same time in the tree-frame.
Indeed, any two points that are equidistant from the origin in the

car-frame must be reached at the same time in the car-frame by the two
photons. So on the diagram shown here, points A and F are at the same
time, points B and E are at the same time, and points C and D are at
the same time in the car-frame.
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Einstein continues: After all, how do we know whether two events that
are spatially separated happened at the same time in the first place? Take
two lightning strikes that happen at points A and B on the spacetime
diagram shown here. The observer in the tree-frame, who is with the
clock fixed to the tree, will see the lightning flashes simultaneously at
point C. Since the flashes of light from A and B are both traveling at the
same speed c, and they cover the same distance to reach the tree, the
observer at the tree will conclude that A and B happened at the same
time in the tree-frame.
On the other hand, the flash of light from B reaches the car at point D,

while the flash of light from A reaches the car at point E. The observer
on the car will see the flash from B before the flash from A. Since both
flashes covered the same distance in the car-frame also, and since they
are again traveling at the same speed c, the observer on the car will have
to conclude that B happened before A in the car-frame.
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Einstein’s argument
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Similarly, if the lightning flashes occur at points A and B shown here,
the observer in the car-frame will conclude that A and B happened at
the same time, but the observer in the tree-frame will conclude that A
happened before B.
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4.6 The solution, continued

We have seen that points that are at the same time in the car-frame lie
along tilted lines on the spacetime diagram in the tree-frame.
We can go through the exact same argument to conclude that points

that are at the same time in the tree-frame lie along tilted lines on the
spacetime diagram in the car-frame, as shown here.

light lighttree ct�

x�

D� C�

E�

F�

D�

D�

E�

F�

G�

C�

B�

A�

G�

B� A�



86 Einsteinian relativity

Slice the the car-frame spacetime diagram with any line parallel to the
line D′E′F′G′ on the previous page and we will always find the correct
relative positions of the tree, the car, and the photons in the tree-frame.
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So the points D′, E′, F′, and G′ on the car-frame diagram must corre-
spond to points that fall on a horizontal line on the tree-frame diagram
as shown here.
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4.7 Conservation of spacetime volume

Now, I argued on page 78 that the points AEFG in the tree-frame dia-
gram fall on a horizontal line on the car-frame diagram, and I also just
argued on page 87 that points D′E′F′G′ on the car-frame diagram fall
on a horizontal line on the tree-frame diagram. But I have not told you
in either case which horizontal line it is. So let me do so now.
Take the line AEFG on the tree-frame diagram first. (Reproduced

here on the opposite page, top figure.) One is tempted to think that
they correspond to the points A′E′F′G′ on the car-frame diagram as
shown on the bottom figure since the spatial separations of the tree, the
car, and two photons in x′ are the same as those in x.
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However, this cannot be correct since it implies that the points H′F′I′J′

on the car-frame diagram, shown on the opposite page, bottom figure,
correspond to the points H′′F′′EJ′′ on the tree-frame diagram, shown
above it. And F′′ is not the same point as F even though there must exist
a one-to-one correspondence between the points on the two diagrams.
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So what is the correct correspondence? On the tree-frame diagram,
draw a line parallel to the car worldline that goes through A, and a line
parallel to AEFG that goes through the origin O. Call the point where
the two lines cross P. Note that P is at the same time as O, and at the
same place as A in the car-frame. So the diamond AEOP on the tree-
frame diagram must correspond to a square, like the one shown in the
bottom figure, on the car-frame diagram. The corresponding square on
the car-frame diagram is the one that has the same area as the diamond
on the tree-frame diagram.
In the current case we are considering here, the area enclosed in the

diamond AEOP on the tree-frame diagram is 12m2. (Just count the
number of squares inside the diamond.) So the length of the sides of the
square on the car-frame diagram must be

√
12m2 = 2

√
3m ≈ 3.5m.

Therefore, points AEFG lie on the horizontal line with ct′ ≈ 3.5m, as
shown on the car-frame diagram.
Under this rule, the square on the tree-frame diagram which has OF

as one of its sides will be transformed to the diamond with the same area
on the car-frame diagram as shown. So under the inverse transformation,
F will be mapped back to where it originally was.
This conservation of spacetime area6 maintains the symmetry between

the tree- and car-frames, since each is moving at the exact same speed
when observed from the other frame, and ensures that the correspon-
dence between the points on the two diagrams is one-to-one. It is a
consequence of the fact that the “number of events” enclosed in AEOP
must be independent of the frame of reference. Recall that a similar
situation also existed in the Galilei transformation case. There too, the
areas of corresponding regions on the spacetime diagrams of different
frames were the same.
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4.8 The Lorentz transformation

Let us now summarize what we have learned so far.
The points that are at the same place in the car-frame fall on vertical

lines on the car-frame diagram, but they fall on tilted lines that are
parallel to the worldline of the car on the tree-frame diagram. This is
nothing new.

light

light tree ct� light

tree-frame diagram

car-frame diagram

Lines that connect points that are at the same place in the car-frame.

lightcarct

x

x�
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What is new is that the points that are at the same time in the car-
frame fall on horizontal lines on the car-frame diagram, but they fall on
tilted lines on the tree-frame diagram as shown here. The tilt is easily
determined since if we take the worldlines of two photons that were
emitted from the spacetime origin, then the points along them that are
equidistant from the car must be at the same time.
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Putting this together, we conclude that the square grid on the car-
frame diagram corresponds to the skewed grid on the tree-frame diagram
shown here. The spacing of the grid lines must be such that the spacetime
area enclosed in a unit cell is the same on both diagrams.

light

tree-frame diagram

car-frame diagram

Corresponding grids in the tree- and car-frames.
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Similarly, the points that are at the same place in the tree-frame fall
on vertical lines on the tree-frame diagram, but they fall on tilted lines
that are parallel to the worldline of the tree on the car-frame diagram.
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And the points that are at the same time in the tree-frame fall on
horizontal lines on the tree-frame diagram, but they fall on tilted lines
on the car-frame diagram as shown here. Again, the tilt is easily deter-
mined since points along the worldlines of two photons emitted from the
spacetime origin that are equidistant from the tree must be at the same
time.
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So the square grid on the tree-frame diagram corresponds to the
skewed grid on the car-frame diagram shown here. Again, the spacing of
the grid lines must be such that the spacetime area enclosed in a unit
cell is the same on both diagrams.
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So to go from the car-frame to the tree-frame, the spacetime dia-
gram must be stretched in the northeast and southwest directions, and
squeezed from the northwest and southeast directions, until the world-
line of the tree becomes vertical while maintaining the worldlines of both
photons at an angle of 45 degrees from the horizontal. The amount of
squeezing in the northwest–southeast direction must be the reciprocal of
the amount of stretching in the northeast–southwest direction in order
to keep the spacetime area inside a unit cell invariant.
This transformation is known as the Lorentz transformation.7,8
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The reverse transformation is shown here. To go from the tree-frame to
the car-frame, the spacetime diagram must be stretched in the northwest
and southeast directions, and squeezed from the northeast and southwest
directions by the same factor, until the worldline of the car becomes
vertical while maintaining the worldlines of both photons at an angle
of 45 degrees from the horizontal. Again, the amount of squeezing must
be the reciprocal of the amount of stretching to keep the spacetime
areas invariant.
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As in the Galilei transformation case, instead of skewing the spacetime
diagram, we can use the same diagram but simply superimpose different
grids to represent the observation from different frames.
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Spacetime grid in the tree-frame

lightcarct
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Spacetime grid in the car-frame

lighttree ct�

x
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Therefore, we can consider the spacetime diagram without any grid
on it as representing the objective physical reality, and superimposing a
particular grid as the choice of frame.
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Once we get used to the idea, we do not have to superimpose a com-
plete grid. All we have to do is to represent the observation from different
frames with different space- and time-axes.
Recall that, in the Galilei transformation case, all frames shared the

same space-axis. This was because lines parallel to the space-axis con-
nected points at the same time, and these were assumed to be the same
for all frames. On the other hand, the time-axis for each frame was given
by the worldline of the origin, where the clock was, in each frame.
In the Lorentz transformation case, the space-axis also becomes frame

dependent since “at the same time” becomes a frame-dependent con-
cept. The angle that the space-axis makes with the horizontal must be
the same as the angle that the time-axis makes with the vertical. This
ensures that photons will travel at speed 1 (since we are using ct as the
time) in that frame.
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4.9 The low velocity limit of the Lorentz
transformation

If the Lorentz transformation is the correct transformation that relates
observations in different inertial frames, and the Galilei transformation
is wrong, why is it that the Galilei–Newton theory worked so well until
people encountered the mystery concerning the speed of light?
Let’s think what happens to the Lorentz transformation when the

relative speed between the two frames is small compared to the speed
of light. On the tree-frame spacetime diagram, the car-frame is repre-
sented by tilted time- and space-axes. The angle between the car-frame
time-axis and the tree-frame time-axis (the vertical) depends on the rel-
ative speed between the tree and the car. In the example we have been
considering, the car is moving at half the speed of light so this angle
is rather large. But if the car is moving at a much smaller speed, like
what we would encounter in everyday life, this angle will be very small.
And since the angle between the car-frame space-axis and the tree-frame
space-axis (the horizontal) must be the same as the angle between the
two time-axes, that angle will also be very small. Furthermore, if we
revert back to using seconds to measure time instead of meters, then
the spacetime diagram will be crushed in the vertical direction so that
the angle between the two space-axes is further diminished while the
angle between the two time-axes is enhanced. And we find that, to a
very good approximation, the Lorentz transformation is just the Galilei
transformation at these low speeds!
So the reason why the Galilei transformation worked (and still does

in most situations) is because the speeds involved were so much smaller
than the speed of light c. It is only when the speeds of objects approach
the speed of light that one has to use the Lorentz transformation to
obtain the correct answer.
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4.10 Addition of velocities

The Lorentz transformation tells us how to relate the observations in
one frame to those in another. So let’s consider the following problem:
a ball is traveling at velocity 1

2c in the car-frame. The car, on the other
hand, is traveling at velocity 1

2c in the tree-frame. What is the velocity
of the ball in the tree-frame?
The Galilei transformation would tell us that the velocity of the ball

is c in the tree-frame, but, as we have seen, the Galilei transformation is
wrong. In particular, the velocity of a photon, which is faster than the
ball in the car-frame, is c in both frames. So the velocity of the ball in
the tree-frame has to be slower than that.
The spacetime diagram on the opposite page shows the motions of

the tree, the car, the ball, and the two photons in the car-frame. Slicing
the diagram along a horizontal line shows the relative positions of the
objects at a particular instant in the car-frame. As you can see, the car
is at rest in the middle, the two photons are equidistant from the car,
the ball is midway between the car and the photon on the right, and the
tree is midway between the car and the photon on the left. This tells us
that the speeds of the tree and the ball in the car-frame are both 1

2c,
since they only cover half the distance the photons cover in the same
amount of time.9

A time slice in the tree-frame would be tilted on this spacetime dia-
gram as shown. The angle of tilt from the horizontal must be the same
as the angle of the worldline of the tree from the vertical. The relative
positions of the tree, the car, the ball, and the photon on the right at
this instant in the tree-frame are shown at the bottom of the figure. As
you can see, the tree is at rest on the left, the car is midway between the
tree and the photon, while the ball is four-fifths of the way between the
tree and the photon. This shows that the velocity of the car in the tree-
frame is 1

2c, as expected, while the velocity of the ball in the tree-frame
is 4

5c.
What we have found is that when we have two frames, 1 and 2 (the

car- and tree-frames), that are moving relative to each other, the velocity
of an object in frame 1 (the velocity of the ball in the car-frame) and
the velocity of frame 1 as seen from frame 2 (the velocity of the car in
the tree-frame) do not simply add up to give you the velocity of the
object in frame 2 (the velocity of the ball in the tree-frame). The actual
velocity is smaller than the simple sum.10
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Now let’s say that, in addition to the tree, the car, the ball, and the
two photons, there is an arrow traveling at velocity 1

2c in the ball-frame.
We can tell immediately from the result of the previous page that the
velocity of the arrow in the car-frame is 4

5c. But what is the velocity of
the arrow in the tree-frame?
The spacetime diagram in the ball-frame is shown here. A time-slice

along a horizontal line tells us the relative positions, and thus the veloc-
ities, of the objects in the ball-frame. The ball is at rest in the middle,
the car is moving to the left with speed 1

2c, the tree is moving to the left
with speed 4

5c (since the ball is moving to the right at speed 4
5c in the

tree-frame), the two photons are moving in their respective directions
with speed c (as always), and the arrow is moving to the right with speed
1
2c.
A time-slice in the tree-frame is along the tilted line as shown. The

angle of tilt from the horizontal must be the same as the angle of the
worldline of the tree from the vertical. The relative positions of the
objects at that instant in the tree-frame are shown on the bottom. The
tree is at rest on the left, the car is half way between the tree and the
photon, the ball is four-fifths of the way between the tree and the photon,
and the arrow is 13

14 of the way between the tree and the photon.11 This
tells us that the velocities of the car, the ball, and the arrow in the
tree-frame are 1

2c, 4
5c, and 13

14c, respectively.12

Notice that, in the tree-frame, the difference in the velocities of the
arrow and the ball is smaller than the difference in the velocities of the
ball and the car (this is clear from the bottom figure), even though the
relative speeds of the objects when observed in a frame in which one of
the objects is at rest is 1

2c. The ball is faster than the car by 1
2c in the

car-frame, but it is only faster than the car by 4
5c − 1

2c = 3
10c in the

tree-frame. The arrow is faster than the ball by 1
2c in the ball-frame,

but it is only faster than the ball by 13
14c − 4

5c = 9
70c in the tree-frame.
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This pattern will continue if we consider another object moving at
velocity 1

2c in the arrow-frame. I will only show the spacetime diagram
on the opposite page and not explain the details, but the velocity of such
an object in the tree-frame will be 40

41c, which is faster than the arrow
by 40

41c − 13
14c = 27

574c.13

What this discussion shows is that, in contrast to the Galilei–Newton
theory, you cannot accelerate objects to arbitrarily large speeds. As the
speeds of objects approach c, it becomes more and more difficult to
accelerate them. You can keep on increasing the speed of an object
by 1

2c increments relative to the frame the object is in prior to each
acceleration, but, when observed from the initial frame, the speed will
increase at ever-diminishing increments as you approach the speed of
light. And even though the speed will keep on getting closer and closer
to c, it will never reach it or exceed it. Of course, this is to be expected:
since the speed of light is the same to all observers, any speed that is
smaller than the speed of light in one frame must be smaller than the
speed of light in all frames.
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4.11 Dependence of inertia on speed

The result of the previous section implies that Newton’s Second Law has
to be modified since different observers will not agree by how much the
velocity of an object has changed. If an object at rest in the car-frame
accelerates to the same velocity as the ball, the change in its velocity in
the car-frame is 1

2c, but in the tree-frame it is 3
10c. If an object at rest in

the ball-frame accelerates to the same velocity as the arrow, the change
in its velocity in the ball-frame is 1

2c, but in the car-frame it is 3
10c, and

in the tree-frame it is 9
70c.

Now, presumably, the same amount of effort on the part of the object
is necessary for it to accelerate from rest to 1

2c in the car-frame as well as
in the ball-frame. But when observed from the tree-frame, the amount
of acceleration the same effort accomplishes is smaller when accelerating
from the ball-frame to the arrow-frame than when accelerating from the
car-frame to the ball-frame. This can be interpreted to mean that the
object has more inertia in the ball-frame than in the car-frame when
observed from the tree-frame.
So according to the Lorentz–Einstein theory, the inertia of an object

becomes a frame-dependent concept. Faster moving objects are observed
to have more inertia than when they are moving slower. And as the
object’s speed approaches c, its inertia becomes infinitely large.
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Notes
1 By “not work” we mean that it does not agree with experimental

observation.
2 In this book, when we say “speed of light” we will always mean its speed

in a vacuum. Light is slower when traveling through transparent
substances such as water or glass because the photons bump into the
atoms in the way, which slows them down. So, in those cases, the speed
of light is not equal to “the speed of light” c.

3 This nine-digit number is actually exact since a meter is defined so that
the speed of light ends up being this number.

4 Galileo’s experiment is described in his book Dialogues Concerning Two
Sciences, which we mentioned in endnote 4 in Chapter 1. An English
translation can be found in [4]. See the dialogue for the first day.

5 In an equation, what Einstein is saying can be expressed as

time it takes =
distance
speed

.

I’m sure everyone knows this and uses it all the time. For instance,
Virginia Tech is located in Blacksburg, which is about 300 miles away
from Washington DC. If you drive at a speed of 60 miles per hour, you
will reach Washington DC in 5 hours. The calculation you just did in
your head is expressed by this equation.

6 When we have more than one space dimension, we will have the
conservation of spacetime volume. In mathematical terms, what this
means is that the determinant of the transformation matrix which relates
the spacetime coordinates of the two frames must be 1.

7 Named after Hendrik Antoon Lorentz (1853–1928). The Lorentz
transformation equations, shown below, were known well before
Einstein’s 1905 paper.

8 In equations, the Lorentz transformation can be written down as follows.
Let (ct, x) be the time and space coordinates in the tree-frame, and
(ct′, x′) be the time and space coordinates in the car-frame. Then (ct, x)
and (ct′, x′) are related as

ct′ =
ct − βx√
1 − β2

, x′ =
x − βct√
1 − β2

, β ≡ u

c
,

where u is the speed of the car as observed in the tree-frame. In matrix
notation, this can be written as

[
ct′

x′

]
= γ

[
1 −β

−β 1

] [
ct
x

]
, γ =

1√
1 − β2

.

We can check that the determinant of this transformation matrix is
indeed 1 as mentioned in endnote 6.

9 The velocity of the ball in the car-frame is + 1
2c, since it is traveling

toward the right, while the velocity of the tree in the car-frame is − 1
2c,

since it is traveling toward the left.
10 If the velocity of an object in frame 1 is v1, and the velocity of frame 1 as

seen from frame 2 is u12, then the velocity of the object in frame 2 is
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given by

v2 =
v1 + u12

1 +
v1u12

c2

.

When v1 = 1
2c, and u12 = 1

2c, it is easy to check that v2 = 4
5c, according

to this formula. This agrees with the velocity we obtained by simply
looking at the appropriate time-slice of the spacetime diagram.

11 The last fraction may be a bit difficult to see. You need to count the tiny
gridlines in the background.

12 You can also check this result against the formula given in endnote 10.
13 If you are not good at fractions, comparing the sizes of fractions like 3

10 ,
9
70 , and

27
574 may seem difficult. In that case, just use a calculator!
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Causality

5.1 Before and after

As we have seen, the only way to reconcile the experimentally observed
fact that the speed of light does not depend on the inertial frame with
our belief in an objective reality, was to abandon the notion that “at
the same time” meant the same thing for all observers. Two events that
are “at the same time” in one frame may not be “at the same time” in
another frame, and vice versa.
Now, some of you may have already realized that this could lead to

a problem with the notion of causality, namely, the notion of cause and
effect. If an event A is the cause of another event B, then A must happen
before B, and B must happen after A. But according to Einstein, the
chronological order in which two events happen can depend on the frame
of reference!
To make our discussion concrete, consider again the tree planted firmly

in the ground, the car moving to the right with speed 1
2c in the tree-

frame, and the ball moving to the right with speed 4
5c in the tree-frame

(which corresponds to 1
2c in the car-frame). The spacetime diagram on

the right shows the space- and time-axes for all three frames: the tree-
frame (x, ct), the car-frame (x′, ct′), and the ball-frame (x′′, ct′′).

Now look at the points A and B on the spacetime diagram. I think it
is clear that A happens before B in the tree-frame. But in the car-frame,
the line that connects A and B is parallel to the x′-axis, which means
that A and B happen at the same time. And in the ball-frame, if we
draw lines that go through A and B that are parallel to the x′′-axis, it is
easy to see that the line that goes through B intersects the ct′′-axis at a
point which is earlier than the point at which the line that goes through
A intersects the ct′′-axis. This means that B happens before A in the
ball-frame.
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5.2 Paradox?

Now imagine that you shot an arrow at A and it hit a target at B. In
the tree-frame, A would be observed to happen before B, so there is
no problem. But in the car-frame, A and B are at the same time so
the arrow will have traversed the distance to the target instantaneously.
And in the ball-frame, B happens before A, so the target was hit before
the arrow was released! This does not make any sense at all, does it?
The release of the arrow is clearly the cause, and the target being hit is
clearly the effect. The effect cannot happen before the cause. Does this
mean that the Lorentz transformation leads to a logical inconsistency?
(Oh, no!)
It would if it were actually possible to shoot an arrow at A to hit

a target at B. But if you look at the proposed worldline of the arrow
carefully, you can see that it must travel faster than the speed of light to
go from A to B. Just compare it to the worldline of a photon emanating
from point A which is shown in the diagram. Now we have already
discussed in section 4.10 that nothing traveling at speeds slower than
c can be accelerated beyond c by incremental increases of its speed. So
shooting an arrow from A to B is actually impossible. (Phew! That’s a
relief.)
But would it be possible to shoot some kind of “beam,” instead of an

arrow, from A to B with a speed faster than c from the very beginning
so that it doesn’t have to be accelerated from slower speeds? Well, if it
were, it would lead to the breakdown of causality, so it had better be
impossible!1
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5.3 Instantaneous communication?

As we have seen, an object traveling at speeds faster than c can lead
to the breakdown of causality. In fact, it is not only objects that must
not travel faster than c but any kind of signal that conveys information.
To see this, I am going to use the following example from the book The
Einstein Paradox [7] by Colin Bruce.
Assume that it is possible to communicate instantaneously with any-

one at any distance.2 Now imagine a long train traveling along straight
horizontal tracks. Observer 1, who is standing along the railroad tracks,
signals to observer 2, who is riding the locomotive of the train, as
the locomotive passes point A on the spacetime diagram. Observer 2
immediately forwards the message received from observer 1 to observer
3, who is riding the caboose, using the instantaneous communication de-
vice. Since the signal is, presumably, instantaneous in the train-frame,
it reaches observer 3 at point B on the spacetime diagram. Observer 3,
upon receiving the message, immediately forwards it to observer 4, who
happens to be standing just alongside the caboose at that particular
instant. Observer 4 then immediately forwards the message to observer
1, again using the instantaneous communication device. Since the signal
is, presumably, instantaneous in the ground-frame, it reaches observer 1
at point C. But C is before A! So observer 1 receives his own message
before he even sent it. A paradox has occurred because we assumed that
a signal could be sent at speeds that exceed c.
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5.4 Impossibility of faster than light travel

As long as no object nor any signal can exceed the speed of light, causal-
ity does not break down. This is because the chronological order of two
events on the spacetime diagram will depend on the frame only when
the line connecting them has a tilt which is smaller than 45 degrees from
the horizontal. In such a case, there always exists a frame in which the
two events happen at the same time. And when observed from another
frame moving to the left (right) relative to that frame, the event on the
left happens before (after) the event on the right. And to connect those
two events by a worldline, the object or signal must be traveling faster
than the speed of light.
On the other hand, the worldline of an object or signal traveling at

a speed slower than the speed of light will have a tilt larger than 45
degrees from the horizontal. Any two events on the spacetime diagram
that can be connected by such a worldline have a fixed chronological
order independent of the frame.
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5.5 The light-cone

Take any point on the spacetime diagram, say A, and draw two lines at
45 degree angles that go through it. These represent the worldlines of
photons that go through point A. The two lines separate the spacetime
diagram into four regions. Any point in the bottom or top regions can
be connected with point A with a worldline of an object or signal whose
speed does not exceed c. On the other hand, this cannot be done for
any of the points in the left or right regions. So the points in the bottom
region are the points that are in the past of A. Only the events happening
in this region can be the cause of anything that happens at A. The
points in the top region are the points that are in the future of A. Only
the events happening in this region can be the effect of anything that
happens at A. The points in the left and right regions do not have a
fixed chronological order with A. They are neither in the past nor in the
future of A. They are the points causally disconnected from A.
The two lines that separate these regions is known as the light-cone. It

may not look like a cone here, but if we consider two space dimensions,
then the surface that separates the causally connected and disconnected
regions will be a cone.3 The top and bottom regions of the diagram are
called the inside of the light-cone, and the left and right regions are the
outside of the light-cone. Any point inside the light-cone of A is said to
be time-like separated from A. Any point outside the light-cone of A is
said to be space-like separated from A.4

The light-cone represents the causal structure of spacetime. It tells you
that only a limited region of the spacetime diagram can be considered
the future, or the past, of any event. And this is because the inside
of the light-cone is the only region that all inertial observers agree as
happening before, or after, the event in question.

Notes
1 Particles that travel faster than the speed of light have been considered

theoretically and are called tachyons (tachy- from the Greek ταχυς,
meaning fast, with the suffix -on for particle). If tachyons existed
causality would break down. So any theory that predicts their existence
is considered a bad theory.

2 This happens all the time in science fiction movies.
3 With three space dimensions, the light-cone is not exactly a cone in the

usual sense of the word, but the terminology is still used due to the lack
of a better word.

4 It’s nerdy terminology so you don’t have to use it, but it’s useful to know.
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Consequences

Let us now take a look at some of the consequences of the fact that the
concept of simultaneity is relative.

6.1 Synchronization of clocks

In our discussion so far, we have assumed that there is a single clock at
the origin which keeps track of the time in each frame. But of course,
we can have multiple clocks at fixed distances from the origin, and have
them synchronized so that they all give the exact same reading in that
particular frame. For instance, in the top diagram shown on the opposite
page, three clocks in the ground-frame have been synchronized. However,
if the same clocks are observed from the car-frame which is moving
relative to the ground, it is clear from the diagram that they are not
synchronized at all.
Similarly, clocks that are synchronized in the car-frame are not syn-

chronized in the ground-frame, as shown in the bottom diagram.
So when you have multiple clocks in a single frame, different observers

in different frames will never agree on whether they are synchronized or
not. This is a rather trivial consequence of the relativity of simultaneity,
but something that may not be so obvious until you think about it.
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6.2 Time dilation

Now, let’s say we wanted to compare the reading of a clock in the ground-
frame with the reading of a clock in the car-frame to see if they are
running at the same rate.
First, let’s consider carefully how we should compare the running of

two clocks. I think everyone would agree that the correct procedure is:

1. Synchronize the two clocks, that is, make sure that initially they give
the same reading at the same time.

2. Wait a while and then compare the readings of the two clocks at the
same time.

You normally would not even mention the at the same time requirement
since it is so obvious. But as we have been discussing, at the same time
for one observer is not at the same time for another.
Now, I think it is clear from the discussion in the previous section that

the only situation in which observers in both frames would agree that
two clocks are giving the same reading at the same time would be if the
two clocks were at the same place.
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So let’s assume that two observers in the ground- and car-frames syn-
chronized their clocks at the origin, labeled A, of the spacetime diagram
as shown. Both clocks are at the same place at the same time in both
frames so if the clocks give the same reading here, step 1 on page 132 is
OK.
Step 2 is the problem. Since both observers are in inertial frames, the

clocks will keep on moving away from each other after A. So when the
ground-frame observer decides to compare the reading of the ground-
frame clock with the reading of the car-frame clock some time later, the
two clocks will be some distance apart, and if he compares the readings
of the two clocks at the same time in the ground-frame, it will NOT
be at the same time in the car-frame. Similarly, when the car-frame
observer compares the reading of the car-frame clock with the reading
of the ground-frame clock, he will compare the readings of the two clocks
at the same time in the car-frame, which is NOT at the same time in
the ground-frame.
For instance, if the ground-frame observer wants to compare the read-

ing of the ground-frame clock at B with the car-frame clock, he will natu-
rally compare it with the reading of the car-frame clock at D, which is at
the same time as B in the ground-frame. But B is at the same time as E
in the car-frame, which is in the future of D. So when the ground-frame
observer compares the readings of the clocks at B and D, the car-frame
observer at E will think that the other observer is comparing the present
reading of the ground-frame clock with the past reading of the car-frame
clock.
The car-frame observer will naturally compare the reading of the

ground-frame clock at B with the reading of the car-frame clock at E
since they are simultaneous in the car-frame. But in the ground-frame,
E is in the future of B, and it is actually C that is simultaneous with E.
So when the car-frame observer compares the readings of the clocks at
B and E, the ground-frame observer at C will think that the car-frame
observer is comparing the present reading of the car-frame clock with
the past reading of the ground-frame clock.
What this discussion shows is that both observers will think that the

other observer is comparing the “present” reading of the other clock with
the “past” reading of their own clock. But what is the “present” reading
of the other clock compared to the “present” reading of your clock?
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The little characters in the figure on the previous page are both claim-
ing that the other clock is running slow. The easiest way to see this is
to Lorentz transform to a frame in which the ground- and car-frames
are moving in opposite directions at the same speed. This lets you see
the two frames in a completely symmetric fashion. The result of such a
transformation is shown here.
Now, the ground-frame observer compares the reading of the ground-

frame clock at B with the reading of the car-frame clock at D. Since the
two clocks were synchronized at A, this is the same thing as comparing
the lengths of AB and AD, and clearly AD is shorter than AB. So the
reading of the car-clock at D will be earlier than the reading of the
ground-clock at B, and the ground-frame observer at B will conclude
that the car-frame clock is running slow compared to the ground-frame
clock.
The car-frame observer compares the reading of the car-frame clock

at E with the reading of the ground-frame clock at B. AB is shorter
than AE. So the reading of the ground-clock at B will be earlier than
the reading of the car-clock at E, and the car-frame observer at E will
conclude that the ground-frame clock is running slow compared to the
car-frame clock.
So what we have discovered is that moving clocks are always observed

to be running slower. This effect is known as time dilation.
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6.3 What time dilation DOES NOT mean

Now, time dilation is often misunderstood to mean that time itself is
flowing at a slower rate in a moving frame compared to a frame at rest.
And consequently, time intervals measured by the moving clock will
always be shorter than those measured by the stationary clock.
This is not true at all.
First, the relationship between the stationary and moving frames is

completely symmetrical. After all, which frame we consider to be moving
is a matter of choice. So if time is flowing at a slower rate in the moving
frame than the stationary frame, then time has to be flowing at a slower
rate in the stationary frame than the moving frame. This is a clear
contradiction.
Second, as we have seen, when the two observers are comparing the

readings of their clocks, they are not measuring the chronological sepa-
ration of the same events at all. They are always measuring events along
the worldline of the other clock.
If the two observers actually measure the time interval between the

same events on the spacetime diagram, then there is no rule that says
that one observer will obtain a shorter time than the other. For instance,
take the four points A, B, C, and D shown here. The chronological
separation between A and B is measured to be shorter in the ground-
frame than in the car-frame. However, the time interval between B and
C are measured to be the same in both frames, while the time interval
between C and D is longer in the ground-frame than in the car-frame.
Time dilation is a phenomenon caused by the relativity of simultaneity,

and has nothing to do with how fast time is flowing.
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6.4 Lorentz contraction

Next, let’s think about the measurement of length.
First, ponder for a moment what we mean by “length.” We mean the

distance separating the two ends of an object at the same time, don’t
we? Say we wanted to measure the length of a moving train. We wouldn’t
measure the position of the front end of the train at one time, and the
position of the back end of the train at another time, and then take the
difference, would we? The train would have moved in between the two
times and the answer we get would not be what we think of as its length.
But we have been discussing that the concept of being at the same time
depends on the observer!
Consider the spacetime diagram shown here. The observer riding the

train would record the position of the front end of the train and the
position of the back end of the train at the same time in the train-frame
and obtain the length of the train by taking the difference. This would
be the distance between points B and C. But the observer on the ground
would record the position of the front end of the train and the position
of the back end of the train at the same time in the ground-frame and
obtain what he thinks is the length of the train. This would be the
distance between points A and B. Clearly AB must be shorter than CB.
Since what we think of as the natural length of an object is its length

at rest, we can conclude that moving objects look shorter than their
natural lengths at rest. This is called Lorentz contraction.
There is a slight complication in this derivation, however, due to the

fact that the Lorentz transformation involves stretching and squeezing
of the spacetime grid so it may not be that clear whether the moving
frame would associate a shorter distance to CB than the stationary frame
would to AB.
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If we consider the case where the train is at rest, this complication
becomes clear. In this spacetime diagram, the observer on the stationary
train will measure the distance between points A and D and call it the
length of the train. A moving observer in another train or car in the
(x′, ct′)-frame, on the other hand, will measure the distance between
points A and B and call that the length of the train.
Now since the train will move to the left between CD and AB in

the (x′, ct′)-frame, AB measured in the (x′, ct′)-frame should be shorter
than AD measured in the (x, ct)-frame. But this is not clear from this
particular spacetime diagram.
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The way to circumvent this complication is to Lorentz transform to
a third frame in which the first two frames are moving at the same
speed in opposite directions. Here, we show in the spacetime diagram
two trains of equal lengths that are moving in opposite directions at the
same speed. The train moving to the left is the (x, ct)-frame train, and
the train moving to the right is the (x′, ct′)-frame train. In the (x, ct)-
frame, the length of the left-moving train (which is at rest in that frame)
is AF while the length of the right-moving train is AE. Clearly, AE is
shorter than AF. In the (x′, ct′)-frame, the length of the right-moving
train (which is at rest in that frame) is AC, while the length of the
left-moving train is AB. Clearly, AB is shorter than AC.
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6.5 What Lorentz contraction DOES NOT mean

Now, just like time dilation, Lorentz contraction is often misunderstood
to mean that space itself shrinks in the direction of motion in the moving
frame, and consequently, spatial distances measured in the moving frame
will always be longer (since they are using a shorter ruler) than in the
stationary frame.
Again, this is not true.
First, as in the time dilation case, the relationship between the sta-

tionary and moving frames is completely symmetrical, since which frame
we consider to be moving is a matter of choice. So if space shrinks in
the moving frame compared to the stationary frame, then space has to
shrink in the stationary frame compared to the moving frame. A clear
contradiction.
Second, when the two observers are measuring lengths they are not

measuring the spatial separation of the same events at all. They are al-
ways measuring events along a time-slice in their own respective frames.
If the two observers actually measure the spatial separation between

the same events on the spacetime diagram, there is no rule that says that
one observer will obtain a shorter length than the other. For instance,
take the four points A, B, C, and D shown here. The spatial separation
between A and B is measured to be longer in the ground-frame than
in the car-frame. However, the spatial separation between B and C are
measured to be the same in both frames, while the spatial separation
between C and D is shorter in the ground-frame than in the car-frame.
Lorentz contraction is a phenomenon caused by the relativity of si-

multaneity, just like time dilation, and does not imply the stretching or
shrinking of space itself in any way.
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6.6 Twin paradox

A common argument made against relativity is the following:
Consider sending an astronaut to a distant star in a spaceship at very

high speed. Assume that the astronaut has a twin sibling waiting back
on Earth.
In the Earth-frame of reference, time on the spaceship will be observed

to pass more slowly than on the Earth due to time dilation. It may seem
as if only a few years have passed on the ship while decades pass on the
Earth. So the twin of the astronaut waiting on the Earth expects the
astronaut to be the younger of the two upon return.
In the spaceship-frame of reference, it is the Earth that is moving

at a very high speed so time on Earth will be observed to pass more
slowly than on the spaceship. Decades will pass on the ship while only a
few years pass on Earth. So the astronaut expects that the twin sibling
waiting on the Earth to be the younger of the two upon return.
Isn’t this a contradiction? What happens when the astronaut comes

back to Earth? Which of the twin siblings will be older? How can both
observations be correct? This problem is known as the “twin paradox.”
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To resolve this question, let us first notice that in order for the as-
tronaut to return to the Earth, she must change direction somewhere.
Otherwise, her spaceship will keep on moving at constant velocity, taking
her farther and farther away from the Earth. Changing direction means
that she must switch from one inertial frame to another, and that breaks
the symmetry between the two siblings.
Now changing direction involves acceleration, which puts the astro-

naut in a non-inertial frame. And as we discussed earlier, special rela-
tivity is a theory that only applies to observations made from inertial
frames, so we can’t really tell what the astronaut observes during the
acceleration process. But let’s for the sake of argument assume that the
acceleration process can be made as short as we like and can be consid-
ered an instantaneous jump from one inertial frame to another. In the
spacetime diagram shown here, this jump occurs at C. Notice that in
the frame the spaceship was in before the jump, C is simultaneous with
A on Earth. But in the frame that the spaceship is in after the jump,
C is simultaneous with B on Earth. So, after the jump, the astronaut
discovers that time on Earth has suddenly jumped from A to B. Because
of this effect, the astronaut will be younger than her sibling when she
returns to the Earth.
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We can make the process completely symmetric by sending both sib-
lings on separate spaceships in opposite directions at the same speed,
have them turn around at a predetermined distance from the Earth,
and have them return at the same time (on the Earth). The worldlines
of their trips are shown here: they both start at the origin O, sibling
1 travels toward the right and turns back at C, while sibling 2 travels
toward the left and turns back at C′.
Both siblings will observe time on the other spaceship to be passing at

a slower rate due to time dilation. However, in sibling 1’s frame before
the turn-around, C is simultaneous with A and D′, but after the turn-
around, C is simultaneous with B and E′. So as sibling 1 turns around at
C, time in the other spaceship suddenly jumps from D′ to E′. Similarly,
in sibling 2’s frame before the turn-around, C′ is simultaneous with A
and D, but after the turn-around, C′ is simultaneous with B and E.
So as sibling 2 turns around at C′, time in the other spaceship suddenly
jumps from D to E. So even though both siblings will observe time in the
other spaceship to be passing at a slower rate when they are cruising
at constant velocity, time on the other spaceship will suddenly move
forward when they turn around. The net effect is that both siblings will
be the exact same age when they return to the Earth.
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6.7 Doppler effect

As a final example of the consequences of relativity, let us discuss the
Doppler effect1 in light. Doppler effect refers to the phenomenon in which
the observed frequency of a wave changes depending on the motions of
the wave source and the observer. For instance, if an ambulance passes by
with its sirens blaring, you will notice that the sound is at a higher pitch
when the ambulance is moving towards you than when the ambulance
is moving away from you. That is an example of the Doppler effect.
Now, if you have learned about the Doppler effect in sound in school,

you may recall that it was caused by the fact that the speed of sound
relative to the sound source and the observer depended on their motions
relative to the air through which the sound was propagating. Since the
speed of light, on the other hand, is independent of the motion of the
light source or that of the observer, you may wonder whether there is a
Doppler effect in light at all. The effect does indeed also happen in light,
but due to the relativity of simultaneity.
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6.7.1 Red shift

Consider a light source whose worldline is given by the ct-axis of the
spacetime diagram shown here. It is moving to the left as it gives off
light at a particular frequency. The worldlines of the crests of the light-
wave are shown here in red. The spatial separation of the successive
crests give the wavelength of the light. In the light-source frame, the
initial wavelength is labeled λ in the diagram. This light is received
by an observer moving away from the light source to the right whose
worldline is given by the ct′-axis. The spacetime diagram is drawn in
a frame in which the source and observer are moving away from each
other in opposite directions at the same speed so that the scales on the
(x, ct) axes and the (x′, ct′) axes are the same.
It is clear from this diagram, I think, that the time intervals separating

the successive wave crests that arrive at the observer are larger than
those of the successive wave crests leaving the light source. This means
that the frequency of the light that is observed by the observer is smaller
than the frequency of the light at the source. This is also clear from
the comparison of wavelengths: the wavelength of the incoming light as
observed from the observer frame is λ′, which is longer than that in the
light-source frame λ.2 If the light is reflected by the observer and travels
back to the source, its wavelength in the light-source frame will be λ′′,
which is again longer than λ′.
What you can conclude is that if the light source is receding away from

you, the frequency will be shifted to a smaller value, or, equivalently, the
wavelength will be shifted to a longer value. This effect is known as red
shift. The terminology comes from the fact that the different colors of the
rainbow are light of different frequencies/wavelengths. The red end of
the rainbow is light with lower frequencies (longer wavelengths), and the
blue/violet end of the rainbow is light with higher frequencies (shorter
wavelengths). Since the Doppler effect discussed here will cause all the
colors to be shifted in the direction of red, it is called red shift.
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6.7.2 Blue shift

What if the light source is coming towards you instead of receding away
from you? The spacetime diagram for that situation is shown here. The
light source is moving to the right along the ct′-axis, while the observer
is moving to the left along the worldline parallel to the ct-axis. The
spacetime diagram tells us that, in this case, the frequency (wavelength)
of light received by the observer is higher (shorter) than that emitted
by the source. This effect is known as blue shift since the colors of the
rainbow will be shifted towards blue/violet.
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6.7.3 Red shift and the expansion of the universe

The amount of shifting that occurs towards the red or the blue depends
on how fast the light source is moving relative to the observer. So by
measuring by how much the frequency of light has shifted, one can not
only determine whether the light source is receding away or coming
towards you, but also what its speed is. That is how astronomers know
that (1) all the galaxies in the universe on average are receding away
from us, and (2) the farther away the galaxy is, the faster the speed by
which it is receding, by measuring the amount of red-shift in the light
coming from those galaxies. This is what tells us that the universe is
expanding. Two natural questions immediately come to mind:

• How do astronomers know what the original frequency of the star-light
that we observe on Earth was? If we see yellow light, has it red-shifted
from blue, or has it blue-shifted from red?

• How do astronomers know how far away a particular galaxy is?

The second question is actually a very difficult problem in astronomy
and beyond the scope of this book. I will have to ask you to study it
yourself in a book on astronomy. (See, for instance, [8].)
The answer to the first question is: the astronomers look for light

emitted by specific atoms. Atoms give off very specific frequencies of
light called spectral lines, so-called since they show up as distinct lines
if you use a prism to separate the frequencies into a rainbow of colors.
The pattern of the lines is unique to each atom. So even if the pattern is
red-shifted, astronomers can still identify which atom the spectral lines
came from. And since the original frequencies of those spectral lines
are known from experiments on Earth, astronomers can determine the
amount of red-shift that the light has undergone.

Notes
1 Named after Christian Andreas Doppler (1803–1853). He predicted the

phenomenon in a paper in 1842.
2 The frequency f and the wavelength λ are related by the relation

fλ = c .

So if λ gets bigger, f becomes smaller.
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Summary of Part I

This concludes Part I of this book. I hope you have been able to grasp
an outline of what relativity is all about. Let us summarize what we
have learned:

• The ‘Special Theory of Relativity’ was constructed by Einstein to
resolve the mystery of the speed of light. Einstein’s solution was that
the concept of simultaneity depended on the frame of reference. And
the rule that relates the observations from different frames was given
by the Lorentz transformation.

The predictions of Special Relativity such as time dilation and Lorentz
contraction are as infamous as they are famous. The reason for the no-
toriety is due to the apparent paradoxical nature of the prediction: say
we have two frames, A and B, moving relative to each other. According
to Special Relativity, the observer in frame A will observe the clock in
frame B to run slower than the clock in frame A, and the ruler in frame
B to be shorter than the ruler in frame A. The observer in frame B will
observe the exact opposite. Now how can both points of view be true at
the same time?
Of course, the two points of view are NOT true at the same time. They

are both true because they are NOT at the same time. Time dilation
and Lorentz contraction were both consequences of the fact that different
observers do not agree on what it is meant to be at the same time. Let us
not forget this since otherwise we can be misled to all sorts of paradoxes
which have nothing to do with the predictions of relativity.
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Qualitative problems

All the problems in this chapter are qualitative and you will be able to
solve them if you can read spacetime diagrams. Try them out to test
your understanding of Special Relativity.1

8.1 Reading the spacetime diagram

8.1.1 Street lamps

Five street lamps, numbered 1 through 5, are located on a straight line
along the x-axis equal distance apart as shown in the figure. They turn
on at points A, B, C, D, and E, respectively, on the spacetime diagram.

1. In what order do the lamps turn on in the ground-frame?
2. In what order does the light from the lamps reach the observer at the

origin x = 0?
3. A car is moving to the right at constant speed relative to the ground.

At t′ = t = 0, it is at x′ = x = 0. The space- and time-axes in the
moving frame of the car are tilted with respect to those of the rest
frame as shown in the spacetime diagram. In what order do the lamps
turn on in the car-frame?

4. In what order does the light from the lamps reach the observer riding
the car?

5. Where is the car when the light from street lamp 4 reaches it?
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8.1.2 Supernovae

The spacetime diagram shows five stars which go supernova (that is,
explode) at spacetime points A, B, C, D, and E. These supernovae are
observed by astronomers on the Earth, and also by scientists aboard a
fast moving spaceship, the worldlines of which are also shown on the
spacetime diagram.
Answer the following questions:

1. In which chronological order do the five supernovae occur in the
Earth-frame of reference?

2. In which chronological order do the five supernovae occur in the
spaceship-frame of reference?

3. In which chronological order do the astronomers on Earth see the
supernovae?

4. In which chronological order do the scientists on the spaceship see
the supernovae?

5. Is the chronological order in which supernovae A and B occur the
same in all frames of reference? Explain.
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8.2 Questions on before and after

8.2.1 The hare and the tortoise 1

The hare and the tortoise decide to have another race. But instead of
running in the same direction toward the finish line, they decide to run
in opposite directions toward finish lines located at equal distances from
the starting line, as shown in the figure.
The race takes place and, in the frame fixed to the ground, both

animals cross their respective finish lines at the same time and the referee
declares the race a tie. Assuming that the two animals move at a constant
velocity from start to finish, what is the result of the race as seen from
the frames of the two moving animals?
Choose from one of the following and explain the reason for your

choice. Use the spacetime diagram to facilitate your explanation.

1. Both the hare and the tortoise think that they won.
2. Both the hare and the tortoise think that they lost.
3. The hare thinks it won and the tortoise thinks it lost.
4. The hare thinks it lost and the tortoise thinks it won.
5. None of the above.
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8.2.2 The hare and the tortoise 2

The hare and the tortoise decide to have another race. They start from
the same point and race in the same direction, but the hare decides to
allow the tortoise a handicap by letting him race only half the distance,
as shown in the figure. The race takes place and, in the frame fixed to
the ground, both animals cross their respective finish lines at the same
time and the referee declares the race a tie. The worldlines of the hare
and the tortoise are shown on the spacetime diagram.
Answer the following questions:

1. At which of the points labeled A through G on the spacetime diagram
does the hare cross its finish line?

2. At which spacetime point does the tortoise cross its finish line?
3. At which spacetime point is the tortoise when the hare crosses its

finish line in the hare-frame?
4. At which spacetime point is the hare when the tortoise crosses its

finish line in the tortoise-frame?
5. At which spacetime point does the tortoise actually see the hare cross

its finish line?
6. What is the result of the race in the respective frames of the hare and

the tortoise? Do they agree or disagree?
7. If the tortoise bases its conclusion on what it actually sees, will it

think that it won or that it lost?
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8.2.3 The hare and the tortoise 3

The hare and the tortoise decide to have another race. This time, they
start out from opposite directions the same distance away from the finish
line, as shown in the figure, and race toward each other. In the frame
of the referee fixed to the ground, the two animals cross their respective
starting lines at the same time and then cross the finish line at the
same time from opposite directions. The referee declares the race a tie.
Assume that both animals were moving at constant velocities before,
during, and after the race.
Answer the following questions:

1. At which spacetime point, labeled A through I, does the tortoise cross
its starting line?

2. In the frame of the tortoise, at which spacetime point is the hare
when the tortoise crosses its starting line?

3. At which spacetime point does the hare see the tortoise start?
4. Do both animals agree with the referee that they started at the same

time? If not, explain in what chronological order the animals start in
each animal’s frame. Refer to the spacetime diagram in your expla-
nation.

5. Do both animals agree with the referee that they finished at the
same time? If not, explain in what chronological order the animals
finish in each animal’s frame. Refer to the spacetime diagram in your
explanation.
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8.2.4 The starship and the supernova

A star is about to go supernova and a planet orbiting it must be evacu-
ated. The starship Einstein is sent to the planet to pick up some biology
students on a field trip to observe the local flora and fauna.
The worldlines of the Einstein, the star, and the planet are shown on

the spacetime diagram. Assume that the planet is not moving relative to
the star. The Einstein will fly by at a constant velocity past the planet
and beam up the students without stopping.
The star goes supernova at spacetime point S. The light from the

supernova spreads out in both directions along the worldlines shown.
Answer the following questions:

1. At which spacetime point, labeled A through H, does the Einstein
arrive at the planet?

2. In the frame moving with the Einstein, at which spacetime point is
the star when the Einstein arrives at the planet?

3. In the Einstein frame, does the Einstein arrive at the planet before
the star goes supernova, or after the star goes supernova? Explain
your answer referring to the spacetime diagram.

4. In the frame fixed to the planet, does the Einstein arrive at the planet
before the star goes supernova, or after the star goes supernova?
Explain your answer referring to the spacetime diagram.

5. Do the students marooned on the planet see the supernova explosion
before the Einstein arrives, or after the Einstein arrives? Explain
your answer referring to the spacetime diagram.
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8.3 Relativistic sports

8.3.1 Tagging up in baseball 1

During a baseball game a fly ball2 is hit toward left field along the third
base line. The left fielder runs forward toward third base and catches
the ball at point B on the spacetime diagram. The runner on third base
tags up and starts off toward home base at point E on the spacetime
diagram.
Answer the following questions:

1. At which spacetime point, labeled A through I, is the third base
runner when the left fielder catches the ball at B in the umpire’s
frame of reference?

2. At which spacetime point, labeled A through I, is the third base
runner when the left fielder catches the ball at B in the left fielder’s
frame of reference?

3. In the umpire’s frame of reference, has the third base runner com-
mitted a foul? Explain, referring to the spacetime diagram.

4. In the left fielder’s frame of reference, has the third base runner com-
mitted a foul? Explain, referring to the spacetime diagram.

5. If the umpire bases his judgment solely on the chronological order in
which he actually sees the ball being caught and the runner leaving
third base, will he call a foul? Explain, referring to the spacetime
diagram.
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8.3.2 Tagging up in baseball 2

During a baseball game a fly ball is hit toward left field along the
third base line. The left fielder runs backward away from third base
and catches the ball at point D on the spacetime diagram. The runner
on third base tags up and starts off toward home base at point G on the
spacetime diagram.
Answer the following questions:

1. At which spacetime point, labeled A through J, is the third base
runner when the left fielder catches the ball at D in the umpire’s
frame of reference?

2. At which spacetime point, labeled A through J, is the third base
runner when the left fielder catches the ball at D in the left fielder’s
frame of reference?

3. At which spacetime point, labeled A through J, is the third base
runner when the left fielder catches the ball at D in the runner’s
frame of reference after he left third base?

4. In which of the three frames discussed above, namely (1) the umpire’s
frame of reference, (2) the left fielder’s frame of reference, and (3)
the runner’s frame of reference after he has left third base and is
running toward home base, has the runner committed a foul? Explain,
referring to the spacetime diagram.

5. If the three observers base their judgments solely on what they see,
which of them, if any, would conclude that the runner has committed
a foul? Explain, referring to the spacetime diagram.
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8.3.3 The offside rule in soccer

During a game of soccer, Matthew is initially in possession of the ball
while his teammate Mark runs toward the goal being kept by Luke of the
opposing team. Matthew kicks the ball toward Mark at point B on the
spacetime diagram. Mark passes John of the opposing team and thereby
enters the offside3 position at E.
Answer the following questions:

1. At which spacetime point, labeled A through L, is Mark when the
ball is kicked at B in Mark’s frame of reference?

2. At which spacetime point, labeled A through L, is Mark when the
ball is kicked at B in John’s frame of reference?

3. In Mark’s frame of reference, did Mark enter the offside position be-
fore the ball was kicked or after the ball was kicked? Explain, referring
to the spacetime diagram.

4. In John’s frame of reference, did Mark enter the offside position before
the ball was kicked or after the ball was kicked? Explain, referring to
the spacetime diagram.

5. What is the chronological order in which Luke, the goal keeper, sees
the two events: the ball being kicked by Matthew, and Mark entering
the offside position?
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8.4 Lorentz contraction

8.4.1 Train and tunnel

A high speed train speeds through a tunnel at constant velocity. The
worldlines of both ends of the train and both ends of the tunnel are
shown in the spacetime diagram.
Answer the following questions:

1. At which of the points labeled A through T on the spacetime diagram
does the front end of the train emerge from the tunnel?

2. At which point does the rear end of the train enter the tunnel?
3. At which point is the rear end of the train when the front end emerges

from the tunnel in the train-frame?
4. At which point is the front end of the train when the rear end of the

train enters the tunnel in the train-frame?
5. Does the train fit inside the tunnel in the tunnel-frame? How about

in the train-frame?
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8.4.2 The starship and the enemy space cruiser 1

The Imperial space cruiser Sir Isaac Newton is equipped with a disruptor
cannon mounted on its rear end which can only fire perpendicularly to
its direction of motion. A standard Imperial Navy tactic is to fly by an
enemy and fire this cannon as the front end of the space cruiser passes
the enemy ship’s rear end. In the following discussion, assume that the
space cruiser flies by so closely that you can neglect the time it takes for
the disruptor beam to travel from the cannon to the target.
The starship Einstein, which is the same length as the Newton when

both are at rest, is about to be attacked. The ship’s doctor is worried
that, due to Lorentz contraction, the Newton will be shorter than the
Einstein and therefore cannot miss. The science officer, on the other
hand, insists that since the Einstein will be shorter than the Newton in
the Newton’s frame, there is nothing to worry about. You, the ship’s
captain, must decide which of them is correct and take appropriate
defensive measures.
Answer the following questions:

1. At which spacetime point labeled A through N, does the front end of
the Newton pass by the rear end of the Einstein?

2. As the front end of the Newton passes by the rear end of the Ein-
stein, at which spacetime point is the rear end of the Newton in the
Einstein’s frame?

3. As the front end of the Newton passes by the rear end of the Ein-
stein, at which spacetime point is the front end of the Einstein in the
Newton’s frame?

4. At which spacetime point does the disruptor cannon fire?
5. When the disruptor cannon fires, at which spacetime point is the

front end of the Newton in the Einstein’s frame?
6. Explain to your ship’s doctor and science officer which of them is

correct. Refer to the spacetime diagram in your explanation.



8.4 Lorentz contraction 187

A B C D

re
ar

 e
nd

 o
f s

ta
rs

hi
p

Ere
ar

 e
nd

 o
f e

ne
m

y 
cr

ui
se

r

fro
nt

 e
nd

 o
f 

en
em

y 
cr

ui
se

r

H

I

G

J

F

K

L

The Newton

M
N

ct ct �

x�

x

Hit? Miss?

The Einstein

fr
on

t e
nd

 o
f 

st
ar

sh
ip



188 Qualitative problems

8.4.3 The starship and the enemy space cruiser 2

The Imperial Navy tactic assumed in the previous problem is actually
unrealistic since there is no way for the gunner at the rear end of the
Newton to know when the Newton’s front end has reached the rear end
of the Einstein. So instead, assume that a light signal is sent from the
front end of the Newton to its rear when a sensor detects the rear end
of the Einstein pass by its front end at N, and the cannon fires when it
receives this signal.
Answer the following questions:

1. At which spacetime point, labeled A through W, does the cannon fire
in this case?

2. Is the Einstein hit this time? Explain, referring to the spacetime
diagram.
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8.4.4 The duel of the space cruisers

An Imperial space cruiser is equipped with a disruptor cannon mounted
on its nose which can only fire in the direction perpendicular to its
direction of motion. The cruiser is well protected by shields except for
one vulnerable spot on its rear end.
Two of these space cruisers challenge each other to a duel. They fly

straight toward each other and fire their cannons as they pass by, trying
to hit the vulnerable spot of the opponent. The commander of cruiser 1
thinks that she will win since, due to Lorentz contraction, her opponent’s
ship will be shorter than hers which will allow her cannon to fire at the
opponent’s vulnerable spot before the opponent gets a chance to fire his
cannon at her vulnerable spot. The commander of cruiser 2 thinks that
he will win due to the exact same reason.
The duel takes place and, from a frame fixed to a nearby planet, it is

observed that both cruisers are the same length; they fire their respective
cannons at the same time, and they are both hit. The worldlines of both
cruisers are shown on the spacetime diagram. The cannon of cruiser 1
(coming in from the left) is fired at point Q, and the cannon of cruiser
2 (coming in from the right) is fired at point P.
Answer the following questions:

1. In the frame moving with cruiser 1 (coming in from the left), at which
spacetime point, labeled A through L, is the nose of cruiser 2 (coming
in from the right) when the cannon of cruiser 1 is fired at Q?

2. In the frame moving with cruiser 1, what is the chronological order
in which the two cannons are fired?

3. When cruiser 2 is hit by cruiser 1’s cannon at Q, a light signal is
sent toward the nose of the cruiser to inform the commander of the
damage. At which spacetime point does the signal reach the nose of
cruiser 2?

4. What was wrong with the commanders’ reasoning that they will win?
Explain, referring to the spacetime diagram.
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8.4.5 Trains in a tunnel

Two trains, 1 and 2, of equal lengths are traveling at the same speed in
opposite directions inside a long, dark, and straight tunnel. At time t1
in the ground-frame of reference, all the ceiling lights in the tunnel turn
on simultaneously. Then, at time t2 in the ground-frame of reference,
they all turn off simultaneously.
In the ground-frame of reference, both trains are observed to be the

same length (since they are both moving at the same speed) and both are
immersed in light for the same amount of time. Therefore, an observer
on the ground concludes that both trains are hit by the same number of
photons.
However, an observer riding train 1 reasons that since train 1 is longer

than train 2 in the train 1 frame of reference (since train 2 is shorter
due to Lorentz contraction) train 1 must be hit by more photons than
train 2. This seems to contradict the conclusion of the observer on the
ground.4

Answer the following questions:

1. At which spacetime points, labeled A through V, are the front and
rear ends of train 1 when its front end enters the field of light in the
train 1 frame of reference?

2. At which spacetime points, labeled A through V, are the front and
rear ends of train 1 when its rear end exits the field of light in the
train 1 frame of reference?

3. At which spacetime points, labeled A through V, are the front and
rear ends of train 2 when its rear end enters the field of light in the
train 1 frame of reference?

4. At which spacetime points, labeled A through V, are the front and
rear ends of train 2 when its front end exits the field of light in the
train 1 frame of reference?

5. What was wrong with the reasoning of the observer on train 1? Ex-
plain, referring to the spacetime diagram.
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Solutions to Chapter 8 problems

8.1 Reading the spacetime diagram

8.1.1 Street lamps – solution

1. 1 and 3 simultaneously, then 5, then 4, and then 2.
2. 1, then 3, then 2 and 4 simultaneously, and then 5.
3. 3 and 5 simultaneously, then 1 and 4 simultaneously, and then 2.
4. 1, then 3, then 2 and 4 simultaneously, and then 5.
5. Midway between lamps 1 and 2.

8.1.2 Supernovae – solution

1. B and E simultaneously, then D, then A, then C.
2. E, then D, then B, then A and C simultaneously.
3. B, then A, then D, then E, then C.
4. B, then D, then E, then A and C simultaneously.
5. The chronological order of A and B is the same in all frames of refer-

ence. The spacetime points A and B can be connected by an object
or signal which travels slower than the speed of light. (In technical
terms, A is in the future light-cone of B.) Therefore, B must happen
before A in all frames.

8.2 Questions on before and after

8.2.1 The hare and the tortoise 1 – solution

Both the hare and the tortoise think that they won. The tortoise crosses
its finish line at A, while the hare crosses its finish line at B. Though
A and B are simultaneous in the referee’s frame, they are not in the
animals’ frames. In the tortoise’s frame, A is simultaneous with D on
the hare’s worldline, which is only about two thirds of the way to the
hare’s finish line. So in the tortoise’s frame of reference, it won the race.
In the hare’s frame, B is simultaneous with C on the tortoise’s worldline,
which is only about two thirds of the way to the tortoise’s finish line. So
in the hare’s frame of reference, it also won the race.
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8.2.2 The hare and the tortoise 2 – solution

1. D 2. C 3. E 4. B 5. A
6. When the hare crosses its finish line at D, in the hare-frame the

tortoise is still at E, and when the tortoise crosses its finish line at
C, in the tortoise-frame the hare is already at B. So in both animals’
frames the hare won.

7. The tortoise does not see the hare cross it’s finish line until A, which
is after C. So if the tortoise bases its conclusion on what it sees, and
does not take into account the finite amount of time it takes for light
to reach it from the hare’s finish line, then it will think that it won.

8.2.3 The hare and the tortoise 3 – solution

1. B 2. G 3. F
4. No, they do not agree. The tortoise starts at B while the hare starts at

H. In the tortoise-frame, B is simultaneous with G, which is chrono-
logically later than H. In the hare-frame, H is simultaneous with C
which is chronologically later than B. So both animals will think that
the other animal started earlier than they did. (The tortoise will not
see the hare starting until it is at D, and the hare will not see the
tortoise starting until it is at F. So if the animals do not take into
account the finite time it takes for light to reach them from their
opponent’s starting points, they may reach the opposite conclusion.)

5. Yes, they will agree. Both animals cross the finish line at E.

8.2.4 The starship and the supernova – solution

1. E 2. A
3. In the Einstein-frame, the supernova explosion S is simultaneous with

D and G, which come after E. Therefore, the Einstein arrives at the
planet before the star goes supernova.

4. In the planet frame, the supernova explosion S is simultaneous with
F, which comes before E. Therefore, the Einstein arrives at the planet
after the star goes supernova.

5. The light from the supernova explosion S reaches the planet at C,
which is after E. So by that time the students would have been picked
up by the Einstein and well on their way to safety. The light catches
up with the Einstein at H, which is when the students will finally see
what they were escaping from.



196 Qualitative problems

8.3 Relativistic sports

8.3.1 Tagging up in baseball 1 – solution

1. F 2. D
3. The third base runner leaves the base at E, which is after F, so he

has not committed a foul in the umpire-frame.
4. The third base runner leaves the base at E, which is before D, so he

has committed a foul in the left fielder-frame.
5. The umpire sees the third base runner leaving the base H, while he

sees the ball being caught at G. H is before G so he will call a foul.

8.3.2 Tagging up in baseball 2 – solution

1. H 2. I 3. E
4. The runner leaves third base at G, which is after H and I but before

E. So the runner has NOT committed a foul in the umpire- and left
fielder-frames, but HAS committed a foul in the frame he is in while
he is running.

5. The umpire will see the runner leave third base at F and see the
left fielder catch the ball at C. Since he sees the runner leaving the
base before the ball is caught, he will call a foul. The left fielder,
on the other hand, sees the runner leave third base at A, well after
he caught the ball at D. So the left fielder will not think the runner
committed a foul. Finally, the runner sees the ball being caught at B,
well after he has left third base at G, so he himself will think that he
has committed a foul.

8.3.3 The offside rule in soccer – solution

1. H 2. F
3. In Mark’s frame of reference, B is simultaneous with H. Since Mark

entered the offside position at E, which is before H, it was before the
ball was kicked.

4. In John’s frame of reference, B is simultaneous with F. Since Mark
entered the offside position at E, which is after F, it was after the
ball was kicked.

5. Light from B reaches Luke at J. Light from E reaches Luke at K.
Since K happens before I, Luke sees Mark enter the offside position
first, and then the ball being kicked by Matthew.
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8.4 Lorentz contraction

8.4.1 Train and tunnel – solution

1. I 2. H 3. J 4. G
5. In the tunnel-frame points H and I are simultaneous so the train fits

inside the tunnel exactly. But in the train-frame I is simultaneous
with J and H is simultaneous with G. So when the front end of the
train emerges from the tunnel at I, the rear end is still at J, and when
the rear end finally enters the tunnel at H, the front end is already
at G, so the train is much longer than the tunnel in the train-frame.

8.4.2 The starship and the enemy space
cruiser 1 space – solution

1. N, where the worldlines of the rear end of the Einstein and the front
end of the Newton meet.

2. M 3. J
4. F, since the Newton will fire in its own frame of reference.
5. H
6. The science officer is correct and the ship’s doctor is wrong. The

front end of the Newton will pass by the rear end of the Einstein at
point N. In the Newton-frame, N is simultaneous with F and J, so
the Einstein is extended from J to N while the Newton is extended
from F to N. So when the Newton fires its cannon at F, it will miss.
In the Einstein-frame, F is simultaneous with G, H, and I, so when
the Newton’s cannon fires at F, the Newton is extended from F to
H, while the Einstein is extended from G to I. Clearly the Newton is
shorter than the Einstein due to Lorentz contraction, but the cannon
will miss since the front end of the Newton, at H, has not reached the
rear end of the Einstein, at I, yet.

8.4.3 The starship and the enemy space
cruiser 2 – solution

1. Q
2. Yes, it is hit. In the Newton-frame Q is simultaneous with O, T, and

V, so the Newton is extended from Q to V while the Einstein is
extended from O to T. On the other hand, in the Einstein-frame Q
is simultaneous with P, R, and S, so the Newton is extended from Q
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to S while the Einstein is extended from P to R. No matter how you
look at it, point Q is smack in the middle of the Einstein.

8.4.4 The duel of the space cruisers–solution

1. K
2. In the cruiser 1-frame, Q is simultaneous with K which comes before

P. So cruiser 1 fires its cannon first, and cruiser 2 second.
3. A
4. When cruiser 2 is hit at Q, the damage can only propagate forward

at or slower than the speed of light. Therefore, the nose of cruiser 2
will not feel the damage until A, giving it plenty of time to fire its
cannon back at P. (In technical terms, the spacetime points P and Q
are space-like separated so they cannot be causally connected.)

8.4.5 Trains in a tunnel–solution

1. The front end of train 1 enters the light field at Q. Q is simultaneous
with P and R in the train 1-frame. Therefore, the front end of train
1 is at Q, and the rear end is at P.

2. The rear end of train 1 exits the light field at F. F is simultaneous
with E and G in the train 1-frame. Therefore, the front end of train
1 is at G, and the rear end is at F.

3. The rear end of train 2 enters the light field at V. V is simultaneous
with S, T, and U in the train 1-frame. Therefore, the front end of
train 2 is at U, and the rear end is at V.

4. The front end of train 2 exits the light field at A. A is simultaneous
with B, C, and D in the train 1-frame. Therefore, the front end of
train 2 is at A, and the rear end is at B.

5. Even though train 2 is shorter than train 1 in the train 1 frame of
reference, as can be seen by comparing the lengths of AB and CD,
it spends more time in the light field. The rear end of train 2 starts
entering the light field at V, and is completely immersed in light (QR)
by the time the front end of train 1 starts entering the light field at
Q. The rear end of train 1 exits the light field at F, but at that time
train 2 is still completely immersed in light (EF). So the effect of
Lorentz contraction is completely cancelled out by the fact that train
2 spends a longer time in the light than train 1.
The important thing to notice is that the lights inside the tunnel

do not turn on and off simultaneously in either of the trains’ frames.
In the train 1-frame, what you observe is a band of light moving from
the right to the left. See the spacetime diagram shown below. Since
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train 1 is moving in the opposite direction as the band of light while
train 2 is moving in the same direction, train 1 spends less time in
the light than train 2. By the way, the band of light travels at a speed
faster than the speed of light, but that does not violate causality since
nothing is really moving, nor is any information being transmitted.

C A

D B

x

x�

ct �ct

ct2

ct1

At ct � = 0, the lights in this region are ON.

At a slightly later ct�, the lights in this region are ON.

Band of light moves to the left in the (x�,ct �) frame.

Notes
1 To instructors: please feel free to use these problems, or variations of

them, in your courses. If you think of any new problems, please email
them to the author. I plan to create a separate booklet of relativity
problems.

2 A “fly ball” is a ball that is hit high into the air, as opposed to a “ground
ball,” which is hit downwards toward the ground. In baseball, the runner
cannot run while the fly ball is in the air and must wait until it is either
caught (in which case the batter is out) or it bounces on the ground.
Otherwise, an obvious tactic would be for the batter to hit as high a fly
ball as possible and have the runner run while the opposing team can do
absolutely nothing about it.

3 In soccer, one cannot pass a ball to a teammate unless there is at least
one other member of the opposing team between your teammate and the
opposing team’s goal keeper. When there is none, your teammate is said
to be in the “offside” position. The point of this rule is to give the goal
keeper a fair chance to defend the goal. It is, however, permissible to send
out a pass into the offside zone if your teammate only enters the offside
zone “after” the pass is kicked.

4 I thank David Seppala for informing me of this problem.
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Quantitative problems

9.1 Addition of velocities

Solve the following problems pictorially using spacetime diagrams. (Do
not resort to the equation provided in the endnotes of Chapter 4.)
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1. A tree is at rest on the ground, and a car is traveling to the right at
speed 1

2c. If a ball is traveling to the left at speed 1
2c in the tree-frame,

what is its speed in the car-frame?

Solution: See figure.
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2. A tree is at rest on the ground, and a car is traveling to the right at
speed 1

2c. If a ball is traveling to the left at speed 1
3c in the tree-frame,

what is its speed in the car-frame?

Solution: See figure.
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3. A tree is at rest on the ground, and a car is traveling to the right
at speed 1

2c. If a ball is traveling to the right at speed 1
4c in the

tree-frame, what is its speed in the car-frame?

Solution: See figure.

light

ct ball car
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c
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4. A tree is at rest on the ground, and a car is traveling to the right
at speed 1

2c. If a ball is traveling to the right at speed 1
4c in the

car-frame, what is its speed in the tree-frame?

Solution: See figure.

light

tree ball
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5. A tree is at rest on the ground, and a car is traveling to the right
at speed 1

3c. If a ball is traveling to the right at speed 1
3c in the

car-frame, what is its speed in the tree-frame?

Solution: See figure.
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PART III

Dynamics: Relativity with a few equations
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The world’s most famous equation

In Part III, we will discuss the world’s most famous equation1

E = mc2

The symbol E in this equation represents the energy of an object at rest,
m represents the object’s mass, and c is the speed of light in vacuum
as before. Obviously, in order to understand what this equation means,
we must first understand what energy and mass are. And for that, we
must first understand Newtonian dynamics. So as in Part I, I will first
discuss the Galilei–Newton theory before going on to the Einsteinian
theory. In the following, I cannot avoid using equations altogether, since
E = mc2 itself is an equation, but I will continue to use drawings as
much as possible.

Notes
1 This equation did not appear in Einstein’s first paper on relativity, which

we referred to at the beginning of Part I, namely the one titled “On the
electrodynamics of moving bodies.” Instead, it appeared in a short paper
submitted to the journal Annalen der Physik several months later titled
“Does the inertia of a body depend upon on its energy-content?” (“Ist
die Trägheit eines Körpers von seinem Energieinhalt abhängig?” in the
original German). English translations for both papers are included in [4].
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The problem

Recall the questions about motion that I listed as the “more advanced”
ones in section 2.1:

Q4+Q5: Is the velocity changing with time?
Q6: If the velocity is changing, what is causing it?

Let us ask these questions of the motion of a baseball whose worldline
is shown here on the spacetime diagram. The worldline has a kink at
point A, the time-coordinate of which is t = 3 seconds, so we can tell
that the velocity of the baseball changed at t = 3 seconds. The baseball
has been hit by a bat at this point. The worldline before A is vertical, so
the baseball was at rest before being hit. From the slope of the worldline
after A, we can tell that the velocity of the baseball after being hit was
+1 meters per second. So the answers to the above questions in this case
are:

A4+A5: The velocity of the baseball changed instantaneously at t = 3
seconds from 0 meters per second to +1 meters per second.

A6: The velocity of the baseball changed because it was hit by a bat at
t = 3 seconds.

These answers further bring to mind the following questions:

Q7: If the baseball is given the “same impact” as it received from the
bat at t = 3 seconds again, what will its velocity be?

Q8: If the “same impact” is given to a different object at rest, say
something lighter like a ping-pong ball, or something heavier
like a bowling ball, what will the object’s velocity be?

Let us first look at the answers provided by Newtonian dynamics.
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Newtonian dynamics

12.1 The mass–momentum vector

Situations that can be addressed within Newtonian dynamics are cases
in which the velocities of objects are much slower than the speed of light
c, and the Galilei transformation suffices as the transformation from one
inertial frame to another.
Now, we would like to answer the questions posed in the previous

section using diagrams. But for that we must be able to represent pic-
torially what we mean by the term “same impact.” In the current case,
the “impact” we are talking about is that which accelerates the baseball
from “a state in which it is at rest” to “a state in which it is traveling
at +1 meters per second.” But this in turn means that we must first be
able to represent pictorially the “state of the baseball moving at velocity
v” for generic velocities v.

So how can we do this? Of course, the motion of any object is described
by its worldline on the spacetime diagram, and the object’s velocity is
encoded in the slope of the worldline. But there are two reasons why the
worldline is not an appropriate representation of the “state of motion”
of an object:

1. Depending on whether the object is a baseball, a ping-pong ball, or
a bowling ball, the amount of “stuff” that is moving is different, but
the worldline does not give you that information.

2. No matter where the object is spatially, the velocity of the object will
be the same as long as the slope of its worldline is the same. However,
worldlines distinguish the spatial location of the object also.

In other words, to specify the “state of motion” of an object, we need to
specify not only its velocity but also how much “stuff” is contained in it
(this is called the mass of the object), while where the object is located
spatially is redundant information.
The reason why we need to specify the mass of the object here is
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because the inertia of the object will depend on what its mass is, and
the change in its velocity when the “same impact” is applied will be
different. Just imagine hitting a baseball, a ping-pong ball, and a bowling
ball with a bat.
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Let us begin by thinking about how to represent pictorially the “state
in which the object is at rest.” Since it does not matter where the object
is at rest as long as it is at rest, consider it to be at rest at the spatial
origin. Then, the worldline of the object will overlap with the time-axis
of the spacetime diagram. Now, let’s draw an arrow along this worldline
starting from the spacetime origin, and let the length of the arrow be
proportional to the mass of the object. If the mass of the object is
doubled, we also double the length of this arrow. If the mass of the
object is halved, we also halve the length of the arrow. This will allow
us to encode not just the fact that the object is at rest, but also how
much mass is at rest. Of course, we have to specify the correspondence
between the length of the arrow and the object’s mass, but before we do
that, let’s think about representing the “state of motion” in which the
object is moving.
When the object is moving at velocity v, its worldline is tilted. As

in the case where it is at rest, it does not matter where the object is
spatially, so let this worldline go through the spacetime origin. We would
like to represent the “state of motion” of this object with an arrow
along this worldline starting at the spacetime origin and with a length
proportional to the mass of the object. (See the figure on the opposite
page, upper-right.) Now, if the arrow which represents the same object
at rest is given by that shown in the upper-left figure, what should the
length of this arrow which represents it in motion be?
You may think that the length of the arrow should stay the same as

when the object was at rest, but this is incorrect. This is because the
“state in which the object is moving with velocity v” must be the same as
the “state in which the object is at rest” observed from a frame moving
at velocity −v relative to the first. If we Galilei transform the spacetime
diagram with the arrow representing the object at rest to such a frame,
we obtain the figure shown on the opposite page, middle-left. As you
can see, the vertical height of the arrow, and not its length along the
object’s worldline, must stay the same as when the object was at rest.
This tells us that the “states of motion” of objects with the same mass
but different velocities should be represented by arrows with the same
vertical height as shown in the bottom figure. We will call the vertical
height of the arrow from the spacetime origin its time-component.
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We must now specify how to assign a length to the arrow for a given
mass. Now, the SI unit for mass is kilogram (kg).1 If you live in a country
other than the USA, kilograms may seem like a unit of weight to you, but
weight and mass are completely different things.2 Weight refers to the
strength of gravity acting on the object, so it will be different depending
on whether it is measured on the Earth, or on the Moon, or on Mars.
On the other hand, mass refers to the “amount of stuff” that the object
contains, so it will not change depending on the locale. However, as long
as we measure the weight of an object on the surface of one particular
astronomical object, say the Earth, it will be proportional to the object’s
mass,3 and this allows us to use the same unit for both. That is, if an
object’s weight on the surface of the Earth is 1 kilogram, then its mass
is also 1 kilogram.4

The length of the arrow must be proportional to the mass of the
object. So let’s just assign a time-component of 1 second to the arrow
representing the “state of motion” of an object with a mass of 1 kg. Then,
the “state of motion” of the 1 kg object at rest will be represented by
the arrow OA on the upper diagram. The “state of motion” of the same
object moving at velocitiy v meters per second will be represented by the
arrow OB. The time-component of OB is 1 second, as was the case with
OA, but its space-component, that is, its horizonal extent, is equal to v

meters. This is because the object will move by v meters in 1 second.
If the mass of the object is m kg,5 then the length of the arrow

should be m times that of the 1 kg case. So its time-component will
be m seconds, and its space-component will be mv meters. Now, since
the original units of m is kg, and that of mv is kg · m/s (read kilogram
meters per second), converting the units and drawing the corresponding
arrow into the spacetime diagram can be a source of confusion and error.
So let’s just lift the arrows off of the spacetime diagram and place them
on a separate graph with kg notched onto the vertical axis, and kg · m/s
notched onto the horizontal axis, as shown on the lower figure. This
graph represents the “space” of all possible “states of motion.”
To summarize, the “state of motion” of an object of mass m (kg) and

velocity v (m/s) will be represented by an arrow whose time-component
is m (kg) and its space-component is mv (kg · m/s). The quantity mv,
that is, the product of the mass m and the velocity v, is known as the
momentum of the object. As the name implies, the momentum quan-
tifies what might be called the “tenacity of the motion” in the spatial
direction. The larger it is, the more difficult it will be to bring the ob-
ject to a complete stop. On the other hand, as will see later, the mass m
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quantifies the inertia of the object and can be though of as the “tenacity
of the motion” in the time direction. We will call this arrow which repre-
sents pictorially the “state of motion” of the object the mass–momentum
vector.6
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12.2 The impulse vector

Returning to the baseball problem, let’s assume for the sake of simplicity
that the mass of the baseball is 1 kg. (A bit heavy for a baseball, per-
haps.) This baseball was accelerated from the state in which it was at rest
to the state in which it is moving at +1m/s, so the mass–momentum
vectors that represent its states of motion before and after the bat-
impact are as shown in the top figure. Now, draw an arrow connecting
the tip of the mass–momentum vector before the impact to the tip of
the mass–momentum vector after the impact, as shown, and let’s use it
to represent the effect of the impact of the bat. We will call this arrow
the impulse vector.
Define the sum of two vectors to be the vector you get if you attach

the starting-point of the second vector onto the tip of the first vec-
tor, and then connect the starting-point of the first vector and the tip
of the second vector. Using this definition, we can say that the mass–
momentum vector after the impact is the sum of the mass–momentum
vector before the impact and the impulse vector. In other words, adding
the impulse vector onto the mass–momentum vector before the impact
will give us the mass–momentum vector after the impact.
If the change in the velocity of the baseball due to the bat-impact is de-

scribed by this addition of the impulse vector onto the mass–momentum
vector, then answering the questions Q7 and Q8 posed in Chapter 11 is
an easy matter. First Q7, namely, the question of what the velocity of the
baseball will be if the “same impact” is applied to it a second time: if we
add the impulse vector which represents the impact in question (in the
current case, it is an impulse vector with space-component +1 kg · m/s)
to the mass–momentum vector which represents the state of the baseball
traveling at +1m/s, the sum will be the mass–momentum vector shown
in the middle figure. And from the slope of this new vector, we can read
off the velocity of the baseball after the second impact to be +2m/s.
This is as expected since the process should be the same as observing
the baseball at rest being accelerated to +1m/s from a frame moving at
velocity −1m/s relative to the first.

If we continue to apply the “same impact” to the baseball repeatedly,
the effect will be described by the repeated addition of the impulse vec-
tor onto the baseball’s mass–momentum vector, and each addition will
increase the velocity of the baseball by +1m/s. See the bottom figure.
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12.3 Inertial mass

Next Q8, namely, the question of what would happen if the “same im-
pact” is applied to a different object at rest with a different mass. Let’s
consider a bowling ball with mass 2 kg. (A bit light for a bowling ball,
perhaps.) Its initial state of motion at rest will be described by a verti-
cal mass–momentum vector, twice as long as that for the baseball, as
shown in the upper-left figure. If we add the impulse vector with space-
component equal to +1 kg · m/s to it, the resulting mass–momentum
vector will be that also shown in the upper-left figure, and we can read
off the velocity of the bowling ball after impact to be +0.5m/s. Be-
cause the mass of the bowling ball was double that of the baseball, the
“same impact” only accelerated the bowling ball by half as much as the
baseball.
Similarly, if the mass had been three times that of the baseball, the

change in velocity would have been one-third, and if the mass had been
four times that of the baseball, the change in velocity would have been
one-fourth. In general, if the mass were n times that of the baseball,
the change in velocity due to the “same impact” would have been 1/n.
(See figures above-center and above-right.)
Next, let’s consider an object like a ping-pong ball which is lighter than

the baseball, say with mass equal to 0.5 kg. (A bit heavy for a ping-pong
ball, perhaps.) This time, the mass–momentum vector which represents
its initial state is half as long as that for the baseball as shown in the
lower-left figure. Adding the impulse vector with space-component equal
to +1 kg · m/s to it, the resulting mass–momentum vector will be that
also shown in the lower-left figure, and we can read off the velocity of
the ping-pong ball after impact to be +2m/s. Because the mass of the
ping-pong ball was half that of the baseball, the “same impact” has
accelerated the ping-pong ball twice as much as the baseball.

Similarly, if the mass had been one-third that of the baseball, the
change in velocity would have been three times that of the baseball,
and if the mass had been one-fourth that of the baseball, the change
in velocity would have been four times that of the baseball. In general,
if the mass were 1/n times that of the baseball, the change in velocity
due to the “same impact” would be n times that of the baseball. (See
figures bottom-center and bottom-right.)
As you can see, the larger the mass of the object is, the longer the time-

component of its mass-momentum vector will be. And the longer the
time-component, the smaller the amount of deflection from the vertical
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that the mass–momentum vector undergoes when its space-component
is increased by the addition of the same impulse vector. Therefore, the
time-component of the mass–momentum vector, namely, the mass of the
object, quantifies how much inertia the object has. The larger the mass,
the more difficult it is to change the object’s velocity. Another way to
think about this is to consider the mass as representing the “tenacity
of the motion” in the time-direction, just like the momentum repre-
sents the “tenacity of the motion” in the space-direction. Both quantify
the tendency of the motion to continue in their respective directions in
spacetime.

12.4 Newton’s Second Law

At this point, let me express in equations what we have discussed so
far using drawings. We have seen that the change in an object’s mass–
momentum vector due to an impact with another object is given by the
impulse vector. But since the impulse vector only has a space-component,
only the space-component of the mass–momentum vector, namely the
momentum will change. And since themomentum is equal to the product
of the mass and the velocity, and since the mass of the object does not
change, the change in the momentum is equal to the product of the mass
and the change in the velocity. So the equation which expresses the same
thing as our drawings is

impulse = momentum change = mass × velocity change .

Using the symbols commonly used in physics textbooks, this becomes

F∆t = ∆p = m∆v .

Here, m is the mass of the object, ∆t is the infinitesimal time interval
during which the impulse acts on the object, ∆p is the change in the
momentum, and ∆v is change in the velocity. The symbol F represents
the “force,” which is the amount of impulse applied to the object per unit
time, so it is equal to the impulse divided by the time ∆t. Consequently,
the impulse is given by the product F∆t. The reason for writing the
impulse this way is because no one ever invented a separate symbol
for it.7 The law expressed by the above equation is known as Newton’s
Second Law.8
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12.5 Newton’s Third Law and the conservation of
mass–momentum

Since I have told you about Newton’s Second Law, let me also tell you
about Newton’s Third Law for the sake of completeness.

Newton’s Third Law9 is the law which governs how two objects interact
and exchange momenta10 with each other. As an example, consider the
process depicted in the spacetime diagram shown top-right: at point
A on the spacetime diagram, a moving object 1 collides with another
object 2 at rest. Newton’s Third Law states that during this collision, the
impulse vector applied to object 2 by object 1, and the impulse vector
applied to object 1 by object 2, are of the same magnitude but pointing
in opposite directions. Since the impulse was equal to the change in
the momentum, this is the same thing as saying that the change in the
momentum of object 1, and the change in the momentum of object 2,
are of the same magnitude but pointing in opposite directions. In other
words, the amount of momentum gained by one object is the same as
the amount of momentum lost by the other: that is, the total momentum
carried by the two objects before and after the collision is the same. The
total mass is, of course, unchanged, so we can also say that the total
mass–momentum vector is unchanged.
The law can easily be extended to more generic situations with n in-

teracting objects. Just think of the interaction of the n objects as a series
of interactions involving one pair of objects at a time. Since momentum
is conserved in each of these interactions, the total momentum of the n

objects will be conserved.
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As an example of what this law can tell us, consider the following
situation: at point A on the spacetime diagram shown here, an object
at rest releases two projectiles of the same mass in opposite directions
with the same speed. The law states that the mass–momentum vector of
the object before point A, and the sum of the mass–momentum vectors
of the object and the two projectiles after point A must be the same.
By drawing a simple picture, as shown in the bottom figure, we can
conclude that the mass–momentum vector of the object after its release
of the two projectiles must stay vertical, that is, the object stays at rest,
while its length is diminished by the masses carried away by the two
projectiles. (This may seem like an esoteric example, but we will use an
analogue of this later.)
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Notes
1 A kilogram was originally defined as the mass of one liter of water at

4 ◦C. (Water is densest at this temperature.) But since this definition was
inconvenient as a standard of mass, a chunk of metal of the same mass
was made and its mass was defined as a kilogram. This, too, is not that
convenient, so proposals have been made recently, to redefine the
kilogram from the mass of a single atom using Avogadro’s number, or
from the energy of a photon using Planck’s constant.

2 In terms of symbols used in physics, mass is m while weight is mg.
3 This means that the inertial mass and the gravitational mass are equal.
4 Strictly speaking, the weight acting on 1 kilogram of mass on the surface

of the Earth is called 1 kilogram-weight and distinguished from kilograms.
5 The mass of an object is often represented by the symbol m. This should

not be confused with the symbol for meters.
6 You can think of the term “vector” as just a nerdy way of saying arrow.
7 Impulse is the same thing as ∆p after all. The force F = ∆p/∆t is
basically the rate of momentum transfer to the object. Note that this
definition of the term “force” is quite different from its use in everyday
English. Not understanding this has lead to a lot of confusion among
beginning physics students.

8 In most physics textbooks, both sides of the equation are divided by ∆t
and written as

F = m
∆v

∆t
,

or

F = ma ,

where

a =
∆v

∆t

is the rate of change of the velocity, and is called the acceleration.
9 Newton’s Third Law is also known as the action–reaction law. When two
objects interact with each other, momentum is exchanged between the
two. Action refers to the rate of momentum transfer from object 1 to
object 2, while reaction refers to the rate of momentum transfer from
object 2 to object 1. Newton’s Third Law states that action and reaction
are equal in magnitude, but opposite in direction, which is just a
mathematical way of saying that what is lost by one must be gained by
the other. Note that the definitions of the terms “action” and “reaction”
are completely different from their use in everyday English. This
unfortunate selection of terminology by Newton has led to endless
confusion, about Newton’s Third Law, when all it is saying is that total
momentum is conserved .

10 The plural of momentum.



12.5 Newton’s Third Law 229



13

Relativistic dynamics

13.1 The energy–momentum vector

Next, let us consider the case when the velocities of objects are close to
the speed of light c, and the Lorentz transformation must be used for
relating observations from different inertial frames.
Assume that a baseball which was initially at rest is accelerated to half

the speed of light by an impact with a bat at point A on the spacetime
diagram. The questions we wanted answers for in Chapter 11 were:

Q7: If the baseball is given the “same impact” again, what will its
velocity be?

Q8: If the “same impact” is given to an object at rest with a different
mass, what will the object’s velocity be?
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As in the Newtonian case, let’s represent the “state of motion” of an
object with a vector on the spacetime diagram. First, to represent the
“state in which the object is at rest,” we follow the Newtonian case and
use a vector pointing vertically up from the spacetime origin with length
proportional to the object’s mass. (See the figure on the opposite page,
top-left.) Next, the “state in which the object is moving with velocity v”
is the same as “the state in which the object is at rest” but observed from
an inertial frame moving at velocity −v relative to the first. So it must
be represented by the vector you obtain by Lorentz transforming the
vector which represents the “state in which the object is at rest” to that
frame. For instance, if we want to find the vector which represents the
“state in which the object is moving at velocity v = 1

2c, we must Lorentz
transform the “at rest” vector to a frame moving at velocity − 1

2c. The
result is shown in the figure opposite, top-right. Notice that, unlike the
Galilei transformed case, not only the space-component but also the
time-component of the vector has changed. What stays invariant is the
area of the diamond with the vector as one of its sides, and the diagonals
at 45◦ angles from the horizontal. (See figure.) When the object is at rest,
this diamond becomes a square with the length of its sides proportional
to the mass of the object, so its area is proportional to the mass squared.
In a similar fashion, we can determine the vectors that represent the

motion of the object at all other velocites. When we do this, the tip of
the vector will move along the curve shown in the bottom figure. This
curve is of a kind known as a hyperbola, and its asymptotes are the light-
cone of the spacetime origin. The distance between the spacetime origin
and the hyperbola is proportional to the object’s mass.
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Now, as in the Newtonian case, it is convenient to draw a graph for the
“state of motion” vectors separately from the spacetime diagram. For
the Newtonian case, we used a graph with mass notched on the vertical
axis, andmomentum = mass× velocity notched on the horizontal axis. In
the relativistic case, however, because the vertical axis of the spacetime
diagram is ct and not t, the corresponding “state of motion” graph will
also have the vertical axis multiplied by c. So the quantity notched on the
vertical axis will be mass× (speed of light), while that on the horizontal
axis will be mass× velocity as before. The units for both axes will be
kg · m/s.
The vector representing the “state of the object of mass m at rest”

on this graph is then one with time-component equal to mc, and space-
component equal to zero. The vector representing the “state of the object
of mass m moving at velocity v” will be the Lorentz transform of the
“at rest” vector, as shown in the figure. As we noted above, the time-
component is longer than what it was at rest. We express the factor
by which the time-component has lengthened with the greek letter γ,
that is:

(time-component at velocity v) = γ(time-component at rest) = γmc .

Then, since the ratio of the time-component and the space-component
is determined by the velocity v, we must have

(space-component at velocity v) = γmv .

Note that the factor γ is a number that depends on v and changes
with it. When v = 0, there is no lengthening of the time-component,
so γ = 1. However, as v grows toward c, the diamond shown in the
figure will get flatter and flatter and collapse onto the light cone, while
still maintaining a constant area. For this to happen γ must diverge to
infinity as v approaches c.1

Now, the time-component of our vector represents the “tenacity of the
motion” in the time-direction, while its space-component represents the
“tenacity of the motion” in the space-direction. The space-component
γmv is called the momentum, just as in the Newtonian case (though
its numerical value differs by the factor γ), and is represented by the
symbol

p = γmv .

The time-component γmc represents the inertia of the object, so you
may be inclined to call it the mass (times c)2. However, we would like to
reserve the term for m, which is the amount of “stuff” contained in the
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object, and independent of the frame. So we will call the time-component
of our vector by another name: the energy. To be more precise, the energy
E is defined as the time-component of the vector times c:

E = γmc2 .

Thus, the vector we have defined will be called the “energy–momentum
vector.”3

Notice that when the object is at rest, v = 0, the γ-factor is equal to
one, and the above equation reduces to

E = mc2 .

E = mc2 is the energy that the object has when it is at rest, so it is
called the rest energy. Now, this is Einstein’s famous formula, but at
this point, we have just taken the mass, multiplied it by c2, and given it
the alias rest energy, so it does not have any physical meaning yet. We
will revisit this equation later.

�mc

�my p (kg.m/s)

E/c

mc
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13.2 The energy–momentum vector of a photon

The photon is the particle associated with light, so it travels at the
speed of light c. What kind of energy–momentum vector will represent
its motion?
If a particle’s mass is m, the tip of its energy–momentum vector will

move along a hyperbola as shown in the top figure.4 The distance be-
tween the graph’s origin and the hyperbola was equal to mc.5 Now,
imagine letting the particle mass m get smaller and smaller until it fi-
nally reaches zero. Then, the distance between the hyperbola and the
origin will get smaller and smaller, until the hyperbola finally collapses
onto the light-cone, as shown in the bottom figure. In this limit, the
particle’s energy–momentum vector will be at a 45◦ angle from the hor-
izontal, which means that the particle is traveling at the speed of light.
Therefore, particles like the photon that travel at the speed of light must
have mass equal to zero. Conversely, a massless particle can only travel
at the speed of light.
Because the energy–momentum vector is at a 45◦ angle, the energy E

and momentum p of a photon must be related by

E = pc.

That is, the photon’s energy and momentum6 are not independent and
determining one will determine the other. But then, what determines the
energy of each photon?7 Again, it was Einstein, who again in 1905 [10]
showed that the energy of a photon E is proportional to the frequency
of the corresponding light wave f , and is given by the relation

E = hf,

where h is a number known as Planck’s constant. We are not going to
discuss where this equation comes from in this book. However, note that
for this equation to be correct in all frames of reference, both sides of
the equation must transform in the same way under Lorentz transfor-
mations.
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For instance, if we have two photons of the same frequency, one propa-
gating toward the right and the other propagating toward the left, their
energy–mometum vectors will have the same length as shown in the top
figure. If the same two photons are observed from a frame moving with
velocity −1

2c relative to the first, the energy–momentum vectors of the
two photons will be as shown in the bottom figure, which can be ob-
tained from the top figure by a Lorentz transformation. As you can see,
the energy–mometum vector of the photon propagating toward the right
will become longer, while that for the photon propagating toward the
left will become shorter. This means that the energy of the photon will
become smaller if observed from a frame moving in the same direction as
the photon, while it will become larger if observed from a frame moving
in the opposite direction from the photon.
If there is a proportionality relation between the photon’s energy and

the frequency of light as given above, then the frequency of light must
depend on the frame in exactly the same way as the energy. And indeed,
as we discussed in Part I, the frequency of light does depend on the
frame due to the Doppler effect! We did not calculate by how much the
frequency will change in Part I, but it is possible to prove that the rate
of change of the frequency is exactly the same as the rate of change of
the energy, thereby justifying the relation E = hf .
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13.3 The work–impulse vector

We are now ready to tackle questions Q7 and Q8 posed at the beginning
of section 13.1. Let us begin with Q7. The energy–momentum vectors
which represent the “state of the baseball at rest,” and the “state of the
baseball moving at 1

2c” are given by OA and OB, respectively, in the
figure. (I will not specify the mass m since the numerical value of mc

will end up being huge due to the large value of c.)
As in the Newtonian case, the vector AB that connects the tips of the

two energy–momentum vectors represents the “impact” of the bat. This
time, because the time-component of the energy–momentum vector has
changed as well as the space-component, the vector that represents the
“impact” has a non-zero time-component as well. This time-component
is called work, and together with the space-component which was called
the impulse, the vector AB is called the work–impulse vector.
Now, we would like to apply the “same impact” to the baseball trav-

eling at + 1
2c, but unlike the Newtonian case, we must be careful with

what we mean by “same impact.” For, as we discussed in section 4.10,
if we observe the process of the baseball being accelerated from rest to
+ 1

2c from a frame moving at velocity − 1
2c relative to the first, it will be

observed as a process of the baseball being accelerated from + 1
2c to + 4

5c,
and the work–impulse vector that connects these two states, represented
by OB and OC on the diagram, will be given by the vector BC, which
is clearly different from vector AB.
From the point of view of the accelerating baseball, however, AB and

BC are the “same impact” since, in both cases, the baseball will observe
the frame it was in before the impact to be moving at velocity −1

2c rel-
ative to it after the impact. Furthermore, the work–impulse vector CD
which accelerates the baseball from + 4

5c to + 13
14c is also the “same im-

pact” from the point of view of the baseball (cf. section 4.10). Therefore,
if by “same impact” we mean the “same impact from the point of view of
the accelerating object,” then the result of applying the “same impact”
to the baseball traveling at +1

2c will be the baseball traveling at +4
5c,

and the “same impact” applied again will take the baseball to the state
in which it is traveling at + 13

14c, and so on.
However, when observed from the frame in which the baseball was

initially at rest, AB, BC, and CD are all different work–impulse vectors.
Neither the time-component (work), nor the space-component (impulse)
are equal. So even though the “impacts” are “the same” from the point
of view of the baseball, the work–impulse vectors that represent them
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are all different and will depend on the frame from which they are being
observed.
So what if we define “same impact” to mean “the same work–impulse

vector when observed from the initial frame”? That is, instead of adding
BC to OB to obtain OC, we try to add AB to OB. If you try this, you
will find that, in fact, you cannot add AB to OB: the resulting sum
will be a vector that does not fall on the hyperbola that the tip of the
energy–momentum vector must follow. That is, it is not an allowed state.

E/c
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A
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However, instead of specifying both the work and the impulse using
the vector AB, we could ask what would happen if we add a work–
impulse vector to OB with the same space-component as AB, but with
its time-component adjusted appropriately so that the resulting vector
would be an allowed state. The resulting energy–momentum vector is
shown in the figure as OC′. If you compare this vector with OC on the
diagram on the previous page, you can tell that the state represented
by OC′ has velocity slightly smaller than that of OC which was +4

5c.
Though it is a bit difficult to read off from the diagram, the velocity of
OC′ is about +0.76c. Similarly, if we add to OC′ a work–impulse vector
with the same space-component as AB but with its time-component
appropriately adjusted, we obtain OD′, the velocity of which is about
+0.87c.
In this way, the answer to Q7 will depend on what we mean by the term

“same impact.” However, in either case, the change in the velocity of the
baseball due to the second impact is smaller than +1

2c, and that due to
the third impact is smaller still. If we keep on iterating the process, the
change in velocity per impact will continue to decrease, and no matter
how many impacts are applied, the baseball is never accelerated beyond
c. And the reason behind this is that, as the baseball is accelerated,
its energy–momentum vector will get longer and longer in the time-
direction, making its inertia larger and larger. In the limit that the
velocity approaches the speed of light, the inertia will grow to infinity,
making it impossible to accelerate the baseball further.
What about question Q8? If we consider a ball with twice the mass of

the baseball, the vector representing its state at rest is given by OF,
shown on the bottom figure, which is twice as long as OA. Adding
the same work–impulse vector as AB to OF will not result in an al-
lowed state, so again we consider adding a vector with the same space-
component as AB, but with its time-component appropriately adjusted.
The resulting vector is OG. In Newtonian dynamics, the change in ve-
locity when the same impulse was applied was inverse proportional to
the object’s mass, so in the current case, it would predict the change in
velocity to be half of +1

2c, namely + 1
4c. However, if you look at OG care-

fully, you can tell that its velocity is slightly larger: it is about +0.28c.
The reason behind this may sound a bit counter-intuitive, but when sub-
jected to the same impulse, the extra mass prevents the velocity from
increasing as quickly, which prevents the inertia from growing as quickly,
which in turn results in a larger increase in velocity than the Newtonian
case.8
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In this way, Einstein’s relativistic dynamics is quite a bit more com-
plicated than that of Galilei–Newton. Consequently, we cannot write a
simple equation like F∆t = m∆v to predict the outcome of a dynamic
process.9
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13.4 Conservation of energy–momentum

Even though we cannot express relativistic dynamics in a simple equa-
tion, the law that governs the exchange of energy and momenta between
two objects that interact, say via a collision, is simple. The amount of
energy and momentum lost by object 1 must be equal to the amount
of energy and momentum gained by object 2, so that the total energy
and total momentum of the two object system is conserved. In other
words, the sum of the energy–momentum vectors before and after the
interaction must stay the same. The law can be extended to a generic
system with n objects: the total sum of all the energy–mometum vectors
will be conserved.
The important point here is that it is the energy and not the mass

that is conserved. The total energy before and after an interaction are
always the same, but the total mass before and after an interaction are
not necessarily so. To see how energy can be conserved while mass is
not, we will consider a process that was discussed by Einstein himself
in [9].
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13.5 E = mc2

An object of mass m is at rest. At point A on the spacetime diagram,
this object emits two photons of the same frequency back to back: one
toward the right and the other toward the left. The energies of the two
photons are the same since their frequencies are the same, as well as the
magnitudes of their momenta (cf. section 13.2), the directions of which
are opposite.
Since the object is initially at rest, the momentum of the object is

initially zero. This means that the total momentum of the object and
the two photons after A must also be zero. Since the momenta of the two
photons are equal in magnitude but opposite in direction, they sum to
zero. Therefore, the momentum of the object after emitting the photons
must also be zero for the total momentum to be conserved. We can
conclude that the object will stay at rest.
The total energy is also conserved, so the energy of the object must de-

crease by the amount that was taken away by the two photons. However,
due to the relation

E = mc2

between the rest energy and the mass, the mass of the object, which
stays at rest, must also decrease by the corresponding amount. Note that
since photons are massless, they do not carry away any mass. Therefore,
even though the total energy is conserved in this process, clearly total
mass is not.
Since photons can be considered chunks of pure energy without any

mass, we can say that a portion of the object’s mass has been converted
into energy through this process. From this point of view, E = mc2 is
not just a relation which provides the mass with the alias “rest energy,”
but a physical relation which dictates the conversion rate from mass to
energy.
Now, photons are emitted from an object when the object’s internal

energy , such as heat, is converted to electromagnetic energy . But objects
can lose internal energy not just through photon emission, but, for in-
stance, by losing heat to another object with a lower temperature. The
exchange of heat does not involve any exchange of mass, but since the
object’s internal energy decreases just as in the photon emission process,
its mass must also decrease. Conversely, if an object absorbs external
energy, whether in the form of heat or photons, its internal energy will
increase, so its mass must also increase.
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For instance, when water at 100 ◦C with an initial mass of 1 kg cools
to 0 ◦C, it loses mass corresponding to the amount of heat that it has
released. However, the change in mass is only about 0.000 000 005 grams.
Because the speed of light c is so large, unless the released energy E is
huge, the change in mass m = E/c2 will not be large enough to be
measurable. So in our everyday lives we do not have to worry about this
effect, just like most other relativistic effects, and there is nothing wrong
in thinking that mass is conserved.

13.6 Common misconception about E = mc2

The only processes in which the release of energy is large enough so that
the change in the mass is measurable are nuclear processes such as fission
and fusion. Einstein himself suggests, at the end of his original paper
[9], that E = mc2 may be confirmed by looking at such processes.10

For this reason, many people believe that E = mc2 describes the opera-
tional principle behind weapons of mass destruction, namely the atomic
(fission) and hydrogen (fusion) bombs. However, this is a misconception.
The release of energy is not caused by the decrease in mass. Rather,

the decrease in mass is a consequence of the release of energy. E = mc2

just tells us by how much the mass decreases, and does not dictate the
amount of energy released. Therefore, the amount of energy released
in a nuclear reaction has nothing to do with E = mc2, just like the
amount of energy released when water cools from 100 ◦C to 0 ◦C has
nothing to do with E = mc2 either. The amount of energy released in
a nuclear reaction is actually determined by how strongly the nucleons
(protons and neutrons) inside an atomic nucleus are bound together,
and the amount of energy released when water cools is determined by
how strongly the water molecules are bound together in liquid water.
The only difference is that the amount of energy released in a nuclear
reaction is large enough to see the mass difference, while that for water
cooling is not.
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Notes
1 The v dependence of γ can be derived as follows. When the object is

traveling at velocity v, the time- and space-components of the vector
representing its state of motion are related via

space-component
time-component

=
v

c
.

On the other hand, the area of the diamond with the vector as one of its
sides can be shown, using elementary geometry, to be equal to
(time-component)2 − (space-component)2, and since this must be equal
to the area of the square with mc as one of its sides, we have the relation

(time-component)2 − (space-component)2 = (mc)2 .

Solving these two equations for the time- and space-components, we find:

time-component =
mc√
1 − v2

c2

, space-component =
mv√
1 − v2

c2

.

Defining the γ-factor as

γ =
1√

1 − v2

c2

allows us to write the above relations compactly as

time-component = γmc , space-component = γmv .

The time-component is enhanced by a factor of γ compared to when the
object is at rest, and the space-component is also enhanced by the same
factor compared to the Newtonian case.

2 In some old textbooks on relativity, γm is indeed called the mass, while m
is called the rest mass to distinguish the two. However, this terminology
is completely obsolete and no one uses it anymore. After all, once we
decide to call E = γmc2 the energy, which is the same thing as γm since
c2 is just a constant, we do not need two names for the same thing.

3 The reason why the quantity E = γmc2 is called the energy is the
following: When the velocity of the object v is small compared to the
speed of light c, the γ-factor can be approximated by

γ =
1√

1 − v2

c2

≈ 1 +
v2

2c2 + · · · ,

so E is approximately equal to

E = γmc2 ≈ mc2 +
1
2
mv2 + · · · .

The quantity 1
2mv2 is known as the kinetic energy in Newtonian

Dynamics. Therefore, it makes sense to think of E as the total energy of
the particle, mc2 being the rest energy, and any extra portion being due
to the motion of the particle.
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4 This hyperbola on the energy–momentum diagram is known as the mass
shell.

5 This separation between the mass shell and the origin of the
energy–momentum diagram is known as the mass gap.

6 More precisely, the magnitude of the momentum is not independent of E.
The direction of the momentum is arbitrary.

7 Clearly, the relation E = γmc2 is meaningless since in the limit m → 0,
the γ-factor diverges to infinity and the limit of E is indeterminate.

8 An alternative way to see why this would be the case is to consider what
would happen if you decrease the mass. In the Newtonian case, the
change in the velocity for the same impulse could be made as large as one
liked by making the mass approach zero. In the relativistic case, however,
the velocity of objects cannot exceed the speed of light. Consequenty, the
increase in velocity cannot be doubled for the same impact by halving
the mass.

9 The relativistic equation of motion can actually be written compactly as
fµ = dpµ/dτ . However, the simplicity is only superficial and this
equation hides a lot of complications.

10 In [4], the relevant sentence is translated as: “It is not impossible that
with bodies whose energy-content is variable to a high degree (e.g. with
radium salts) the theory may be successfully put to the test.”
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Summary of Part III

This concludes Part III of this book. I hope you have been able to grasp
the basic logic of where the equation E = mc2 comes from. To summarize
the important points:

• In Einstein’s relativistic dynamics, the state of motion of an object
is represented by an arrow called the energy–momentum vector. The
vector’s time-component (vertical component) is the energy, and the
space-component (horizontal component) is the momentum, and they
represent what might be called the “tenacity of the motion” or the
“tendency of the motion to continue as is” in their respective directions
in spacetime.

• The energy–momentum vector depends on the frame from which the
observation is being made. However, the area of the diamond with the
energy–momentum vector as one of its sides and the diagonals at 45◦

from the horizontal is invariant and equal to (mc)2 where m is the
object’s mass.

• Changes in the motions of objects are represented by changes in their
energy–momentum vectors. In a system of interacting objects, the
energy–momentum vector of each individual object will change via
interactions, but the total energy–momentum vector of the system
will be conserved.

• Though the total energy of a system is conserved, the total mass is
not. As a result, processes can occur which can be interpreted as the
mass being converted to energy. In such cases, the equation E = mc2

determines the conversion rate between energy and mass.
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This brings us to the end of my exposition of Einstein’s Special Theory
of Relativity (SR). I have attempted to explain everything that is usually
explained using equations using drawings only so that you can literally
see what I am talking about. I hope you have found this approach more
tractable, eye-opening, and fun.
Partly because of its name, Einstein’s “Theory of Relativity” is often

misunderstood to have discarded Newton’s notions of space and time
that were both “objective” and “absolute,” and to have pronounced
that both space and time were “relative,” and even “subjective” con-
cepts. In truth, Einstein was a firm believer in objective reality, and
SR assumes the existence of an “objective” and “absolute” spacetime.
All SR is claiming is that when the motion of objects in spacetime is
observed from different inertial frames, things like velocity and length
will be frame-dependent. And this dependence comes about because the
way the time- and space-axes are introduced into the “absolute” space-
time differs from inertial frame to inertial frame. The frame-dependence
of the time-axis already existed in Newton’s theory, and as a conse-
quence velocity, not surprisingly, was frame-dependent. In SR, however,
in addition to a frame-dependent time-axis, the concept of simultane-
ity depends on the frame and results in a frame-dependent space-axis
also. This leads to the frame-dependence of things like length, which we
normally do not think of as a frame-dependent quantity.
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In fact, it was not Einstein himself but Max Planck1 (1858–1947) in
1906 who named Einstein’s theory the “Theory of Relativity.” Einstein
did not necessarily like the name and is quoted as saying:

‘Now to the term relativity theory. I admit that it is unfortunate, and
has given occasion to philosophical misunderstandings.’2

He thought a better name would be the “theory of invariants” since SR is
a theory which is concerned with what remains invariant under Lorentz
transformations. As we mentioned in section 2.6, after his 1905 paper on
SR, which was the “Theory of invariants for all inertial frames,” Einstein
spent the next 10 years working on extending it to the “Theory of in-
variants for ALL frames of reference.” He completed this theory in 1915
as the “General Theory of Relativity” (GR) [4]. GR is a monumental
theory, which not only extends the theory of motion to general frames of
reference, but encompasses gravity within its framework as well. I hope
to tell you all about it in my next book.

 That was fun, wasn’t it?  
Next time, let’s study
the General Theory of 
Relativity together!

Notes
1 The discoverer of Planck’s constant we encountered in section 13.2.
2 See [3], page 229.
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